
PostScript Picture
Carol/epsO

Table of Contents/We l c o m e page 1

Copyright Notice .Inside Cover
Welcome .1
Conference Structure .2
Thanks To .3
Committee, Management and Volunteers .5
Keynote .6
Thursday Sessions .7
Friday Sessions .9
Saturday Sessions .11
Conference Schedule .12
Conference Map .16
Paper: The Care & Feeding of a Small Developer:…, Christopher Haupt . . .17
Paper: Creating a Consistent 3D Interface, Shane Looker27
Paper: The Design of Interactive Television Applications, Timothy Knox . . .33
Paper: A Dream of an Ultimate OS, Oleg Kiselyov .37
Paper: Legal Update: Selected Legal Developments…, Roger Leemis 42
Paper: A Macintosh Based Real-Time…, Susan Grocott & Gregory King 49
Paper: Macintosh Task and Process Priority Management, Grant Neufeld . . .55
Paper: Idiosyncrasies of Video, J. Christian Russ .62
Paper: Why C++ isn’t very fit for GUI programming, Oleg Kiselyov 68

MacHack ‘95
The Tenth

Annual Technical
Conference for

Leading Edge
Developers

Table to
Contents

Welcome

Welcome to the 10th MacHack:
I have a confession to make. I wasn’t actually at the first MacHack. Aimée Moran

was the Conference Manager then, and I’d just had a baby, but I can look in the files
and see how much has changed.
In 1986, the first MacHack had 73 people attending to hear 18 sessions over 21/2

days. Sessions ran from 9 AM to 5 PM. The hot issue was the hierarchical file system.
Opinion was divided as to whether or not it was “a good thing”. The Plus was new,
(wow! a whole 1 megabyte of RAM!, this speeds right along at almost 8 MHz), floppy
drives now were for 800K, SCSI ports were the forefront of hot hardware, and hackers
stayed up all night to hack in a fully equipped machine room with four 512e single
floppy Macintoshes. We were even allowed an account on ARPA-Net, a government
run electronic data exchange system to get messages between the brand new
Expotech office and the conference sponsors at the University of Michigan.
In 1995, we expect 300 attendees to attend almost 70 sessions over 3, 24 hour long,

days. ARPA has become the Internet and we have a domain registered to MacHack.
Cyberdog, OLE, and OpenDoc are hot issues. And hackers will stay up all night to
hack in a fully equipped Machine Room with almost 100 computers, most running
at speeds well over 60 MHz, it’s own ISDN connection, and enough hardware and
software goodies to impress even hardened hackers.
We have tried to put together the best MacHack possible. MacHack would not be

possible without the dedicated efforts of many, many volunteers, and the generous
contributions of many, many companies. If you’d like to become one of them for
next year’s conference, please let us know.
Enjoy!

Carol Lynn
Conference Manager

page 2 MacHack ‘95 Program Book & P a p e r s

There are many different things going on simultaneously at MacHack ‘95:

Presentations
Papers given by individuals, case studies, etc., are being presented. Please see the
complete schedule for times and dates.

Sessions
Sessions take place each day of the conference roughly from 10am to Midnight.
Panels take place in the various Ballrooms and Session Rooms. These are the main
programming events. Sessions consist of one or more speakers on a specific topic.
For more information, please see the complete schedule.

Business Sessions
Sessions on topics of business interest are scheduled for 9am through Noon on
Thursday, Friday and Saturday in room 10. Business Sessions must be registered
separately, see registration for details.

Roundtables
In addition to the panels and presentations, there will be “Roundtable Sessions”
Scheduled all throughout the conference. Roundtables will consist of a volunteer
moderator, attendees, a Macintosh, add a dedicated area. Topics will be scheduled
as and when the moderator desires. Session topics can be as specific or as general
as desired. Anyone may add a roundtable to the schedule at any time. Check with
Operations in Room C to add a Roundtable.

Code Clinics
Code Clinics are the place where some of the most talented code-hackers attending
actually dissect, debug, and comment on code. Real, hands-on session, up close
and personal with that code. Code Clinics are scheduled every late afternoon in
Room 5.

Machine Room
The Ballrooms A&B are this year’s “Machine Room.” Here you will find
Macintoshes and other “toys” to play with to your heart’s content. The Machine
Room is open 24 hours from 6pm on Wednesday to 9am on Sunday. Please cooper-
ate with the security stationed at the door; all personal equipment being brought
into the room must be registered with the guards. No briefcases or bookbags will
be allowed in the Machine Room. There has been some missing equipment in past
years that make this necessary.

There will also be PowerBook hookups in the Lobby with access to the
Machine Room.

Hack Contest
Sponsored by the MacHax™ Group. If you have questions on the rules or how to
enter, how to get your hack on the CD or others, go to the opening session sched-
uled for Wednesday in the wee hours of the morning. At other times grab Scott
Boyd and ask him. Hacks will be shown at midnight Friday in the combined
Ballroom (C&D) area. Winners will be announced at the Hack Awards Banquet on
Saturday evening.

Conference
Structure

Thanks to: page 3

The Management and Staff of MacHack ‘95 would like to extend our special thanks to
the following companies and individuals whose generous contributions make
MacHack a more fun and educational experience.

Ameritech
ISDN line setup

Apple Computer, Inc.
Communications and Collaboration – InterNet Router & IP Gateway software
ETO & Mac OS SDK Product Marketing – ETO & Mac OS Software &

Right to Copy
Developer Press – Macintosh Programmer’s Toolbox Assistant CD-ROM &

Inside Macintosh CD-ROM, Complete Inside Macintosh Hardcopy
Developer Support – Software and machines, Friday Night Hack Show Pizza,

ISDN line
Developer Tools Product Marketing– Apple Media Tool, HyperCard 2.3
Internet Server Marketing – The Internet Server Software CD
Open Doc Evangelism – 30 PowerMacs, “Batman Forever” movie tickets,

carrying bags
System 7.5 & 7.5.1 Product Line – System 7.5 and 7.5.1 Update Software &

Right to Copy
Mike Zivkovic & Pat Harding – ETO Hardcopy Documentation

Black Box
network equipment

Chrysler Motor Co.
machine room setup

Digital Ocean
wireless network equipment

Excel Software
technical brochures and a disk

Farallon Computing, Inc.
network machines

Ford Motor Co.
Projection equipment

MacTech Magazine
Hack Show beverages

Metrowerks
software, T-shirts, CD’s, additional publicity

Microsoft Corp.
machines and network hardware, Friday Night Hack Show Pizza, ISDN line

MGM Studios
“Hackers” movie promotional items

Mitech
CDR, monitors, networking bridges, and other hardware

Thanks to:

page 4 MacHack ‘95 Program Book & P a p e r s

MSEN
internet provider

Newer Technologies
memory and speedup chips

Anna O’Connell
Babysitting

Pictorius, Inc.
Prograph CPX

QC
debugging software

Quasar Knowledge Systems, Inc. (QKS)
QKS Host CD, SmalltalkAgents

Rustnet
Internet provider

Shiva Corp.
connection devices

Symantec Corp.
software, keynote pizza

Wayne State University
machine room staff

Wedimeyers
wire and connector, etc

and more - see daily updates for the latest information

Lou Abundis
Mark Birac
Michael,Birac
Joseph Cotter
Josh Dady
Mike Davis
Bob Desoff
Brian Duck
Brad Grupczynski
Brian Duck
Yuri Komarov

Thomas Knox
Bob Meyers
Lorrn Olson
Ronald G. Robinson
Dave Shuman
Doug Stoyer
Darryl Wattenberg
Mike Young
Steve Yuhasz
Joseph A Zayac

Volunteers:

Committee, Management, and Vo l u n t e e r s page 5

Chair:
Sheila Wallace, Fluent Software

Sessions:
Leonard Rosenthol, Aladdin Systems

CD-ROM:
Brian Bechtel, CD Character, DTS,

Apple Computer Inc
John Wallace, Fluent Software

Equipment:
Doug Houseman

Papers:
Richard Clark, General Magic
Shane Looker, Software Engineer,

GlamerWare Software

Internal Networking:
Jay Weiss, Keane, Inc.

External Networking:
Bob Desoff, (Inter Net) Ameritech

Code Clinics:
Marshall Clow, Aladdin Systems, Inc.

Pre Conference Training:
Gary Kacmarcik
James Plamondon, Microsoft

Round Tables:
Timothy Knox, Ameritech

P.R. Advertisment:
Neil Ticktin, Editor-in-

Chief/Publisher, XPLAIN
CORP-MACTECH MAG.

Hack Contest:
Scott Boyd, MacHax™ Group
Greg Marriott, Just Some Guy, General

Magic, Inc.

Volunteer Coordinators:
Gerry Felipe (Pre-conference)
Paula Smith (On-Site)

Apple Liaison:
Rick Fleischman, Product Mgr. -

Dylan, Apple Computer
Inc.

Jordan Mattson, Apple Computer,Inc.

Key Note:
Chris Allen, Consensus Developmen
Brad Kollmeyer, Software Design

Engineer, Microsoft
John Kalb, Liberty Software

T-shirts:
Brad Serbus, Sofrware Design

Engineer, Microsoft

Program Book:
Darryl Wattenberg, D&W Media

Productions

For Expotech:
Conference Managers

Carol Lynn
Bobbie Meganck
Aimée Moran

Administrative Assistants
Katie Scallen
Heather Hogan

Committee:

Management:

page 6 MacHack ‘95 Program Book & P a p e r s

Chris Crawford entered the personal computer revolution in 1977. After

teaching himself enough hardware to design and build his own computer,

he taught himself enough software to program it. He started at Atari in 1979

as a game designer, and was quickly promoted, first to supervise a training

group for programmers, then to lead a games research team at Atari Corporate

Research, reporting to Dr. Alan Kay. Following the collapse of Atari, Mr.

Crawford began working as a freelance computer game designer. Mastering

the Apple Macintosh in six months, he wrote the best-selling game, “Balance

of Power” and was profiled in national media, including The New York Times

Sunday Magazine and Newsweek. Since then, Mr. Crawford's prolific output

includes “Balance of the Planet,” “Patton Strikes Back,” and “The Global

Dilemma.” Crawford founded and served as Chairman of the Board of the

Computer Game Developers’ Conference; he edits and publishes “Interactive

Entertainment Design.“

Keynote:
Chris Crawford

Client/Server
If you thought that Client/Server architecture was on the outs, think again! Hear
about real life experiences developing these system and why they are still better for
many situations. Copland changes the Toolbox Many managers are changing under
Copland, and we don’t mean a reorg! See what’s happening with some Macintosh
staples as the Window Manager, Menu Manager and more!

Driving with Copland
Writing drivers will never be the same! Listen to those who’ve been there tell all
about how much more interesting driver writing can be. Developing for PCI Ready
to replace your NuBus cards with the new kid of the block? Hear how!

Cross-Platform Development with the Win32 API
This two-hour tutorial session will explain how an application writtenonce, to the
Win32 API can be delivered on Windows 3.1, Windows NT (including both the x86
and such RISC chips as Alpha, MIPS, and PowerPC), Windows 95, the 68K Mac,
PowerMac, and a number of flavors of Unix -- all with a single source tree, minimal
effort, little retraining, and low cost. If you want to write your code once, and have
it run everywhere, attend this session.

CyberDog
If you thought Apple was ignoring the Internet - you were wrong! In a compelling
use of OpenDoc, CyberDog brings the net right into your documents. The authors
will show you how it works and how you can extend it or bend it to your will.

Developing for PCI - Allan Foster
Ready to replace your NuBus cards with the new kid of the block? Hear how!

General Magic
It’s finally out and the folks from GM can’t wait to evangelize you to come play with
their new toys. Magic Cap and Telescript will both be covered.

MacOS Futures
Just because Copland is coming doesn’t mean that we have to wait for new improve-
ments to the current MacOS. Apple Engineers will tell you about upcoming
changes to the System 7.5 family and what it means to you.

All about the OpenDoc Framework (ODF)
If you thought Apple didn’t need another class framework - think again! The OPF
makes writing parts a snap and it’s authors will show you how.

Build an OpenDoc Part
Applications of the future will exist as OpenDoc parts. Learn all you need to know
to start building your new and exciting parts today! All about the OpenDoc Parts
Framework (OPF). If you thought Apple didn’t need another class framework -
think again! The OPF makes writing parts a snap and it’s authors will show you
how.

OLE
Come to this session to learn how you can implement, in your application, support
for OLE — the technology that is already being used to integrate shipping
Macintosh applications from Microsoft, Adobe, Caere, and others. Learn about the
features and technologies underlying the next version of Mac OLE, which will make
OLE even more compelling.

Thursday Sessions page 7

Thursday
June 22

page 8 MacHack ‘95 Program Book & P a p e r s

OpenDoc Overview
Find out about how compound documents should work! Apple, Novell and other
industry leaders have formed an alliance to deliver the best tools for the job and our
experts will tell you why!

SOM
Learn all about the IBM System Object Model that forms that basis for OpenDoc
and many of the new toolbox goodies in Copland.

Business Track
Sessions on tech support - how to do it right, opportunities and changes in the
Macintosh market.

Copland Overview
An overview of what Copland (System 8) is all about. What areas of the Macintosh
OS will be affected? What does it mean to users? To developers? To hackers?

Copland Kernal Architecture
Details of the new microkernal that is the guts of Copland. The new I/O subsys-
tems, memory architecture, multitasking & threading and more!

Copland File System
Look at what they’ve done to our file system!! See the changes in both architecture
and API that will make writing file related code and patching it a lot more fun.

Debugging
Learn about the available tools for finding those elusive bugs from the folks who
wrote them! Get some hot tips!

Fanfare & the Appearance Manager
What did they do to my Macintosh??? Apple brings colors, patterns and the per-
sonal touch to the Macintosh in 1995 and your applications had better look good.

Frameworks
Looking for tools to improve your development - class libraries and frameworks are
a good way to go. Here about the ones in use today from PowerPlant and the Think
Class Library to Sprocket, the new kid of the block.

Getting the most from Universal Headers
Apple’s new headers are both pain and pleasure for most developers. Hear about
why Apple chose this new direction and how you can make your own headers con-
form.

Everything you wanted to know about the Internet
Ready to hop on that Information Highway either as a user or developer? Then you
should show up here! We’ll will talk about everything from setting yourself up as a
network node to what state of mind you need to think Unix is actually fun!

Writing an OpenDoc Container
If your application wants to allow things to be contained (embedded) within it,
then this session is for you!

Hacking OpenDoc
This one is for all the real hackers out there! If you thought that Apple was going
to deliver something that couldn’t be hacked up - you’re wrong! The authors tell
just how open OpenDoc is!

OpenTransport 1
Take the first step towards the Macintosh networking world of tomorrow. Learn
what’s happening with AppleTalk, TCP/IP and more!

OpenTransport 2
Looking to do neat and interesting things at a lower level on your network? Maybe
writing your own network protocols or improving Apple’s? Then this session is for
you!

Friday Sessions page 9

Friday
June 23

Introduction to PowerPC Assembly
Even though Apple says not to write assembly code for the PowerPC, that’s never
stopped us! Listen to a long time assembly weanie teach you about the PowerPC
and moving your 68K skills into the future.

Optimizing for PowerPC
For those that want to squeeze that extra cycles out of their software, come hear
from folks who’ve been in the trenches doing it!

Programmer Burnout

QuickDrawGX
Drawing pretty pictures has never been this much fun! Apple’s new imaging system
gives you control that even the folks at Adobe can drool over. Get your feet wet on
GX here!

Business Track
Contract programming - finding and keeping contracts, setting rates, case studies
(or don’t do what I did), project management - theory and reality.

S a t u rday Sessions page 1 0

Development Environments
Looking for those better, faster tools to get your code out to market quicker and
with less bugs. Check out the latest from the folks at Symantec & Metrowerks.

DLLs for the Mac
If you think that Windows folks have us beat with DLLs - your missing a lot. There
are a number of options for dynamically linked libraries on the Mac and some of
the folks who helped write them will tell you more.

Dylan
Apple thinks that the future of development is in dynamic languages and they’ve
even weathered a lawsuit to bring you their vision. The product manager for
Apple’s Dylan technology will give you the show and tell you’ve been waiting for!

Interactive TV

Introduction to PSP (Personal Software Process)
The PSP (Personal Software Process) is a set of 'professional' practices for software
development that provides a framework for measuring your process. Documented
in the propular book, A Discipline for Software Engineering, by Watts Humphery.
PSP provides a framework for 'life-long' process improvement at thelevel of the
individual engineer. As a result professionals plan,design, and schedule better.
Better bids, cleaner code, and fewer defects (read bugs) result.

Women & Hacking
Why aren’t there more women in software development?

Business Track
Copyrights, trademarks, intellectual property rights. Internet and clipper updates.

S a t u rday Sessions page 1 1

Saturday
June 23

Please check the daily updates for sessions and events which may be moved, cancelled or added.

page 1 2 MacHack ‘95 Program Book & P a p e r s

Wednesday June 21, 1995

7:30
8:00
8:30
9:00
9:30

10:00
10:30
11:00
11:30
Noon
12:30
1:00
1:30
2:00
2:30
3:00
3:30
4:00
4:30
5:00
5:30
6:00
6:30
7:00
7:30
8:00
8:30
9:00
9:30

10:00
10:30
11:00
11:30

Midnight
12:30
1:00
1:30
2:00
2:30
3:00
3:30
4:00

Ballroom C Ballroom D Session 4Operations

Registration Opens

Machine Room Opens

MacHack Overview

MacHack VR–
The Project

Welcome

Keynote:
Chris

Crawford

Intro to MacHack;
Essence of Hack

Market Research
How, What & Why

Project Planning
& Managment

Getting Funded
Start-up & Growth

Focus Group
Windows ‘95

Please check the daily updates for sessions and events which may be moved, cancelled or added.

Session Schedule page 1 3

Thursday June 22, 1995

7:30
8:00
8:30
9:00
9:30
10:00
10:30
11:00
11:30
Noon
12:30
1:00
1:30
2:00
2:30
3:00
3:30
4:00
4:30
5:00
5:30
6:00
6:30
7:00
7:30
8:00
8:30
9:00
9:30
10:00
10:30
11:00
11:30
Midnight
12:30
1:00
1:30
2:00
2:30
3:00
3:30
4:00

Ballroom C Ballroom D Session 6/7 Session 8/9 Session 4&5 Session 10

MacOS
Future Newton

General
Magic &

Magic Cap

SOM

To Be
Announced

To Be
Announced

Developing
for PCI

Client/Server

Cross-
Platform

with
Win32 APIs

OpenDoc
Ocerview

Building an
OpenDoc

Part

CyberDog…

All About
ODF

3rd Party
OpenDoc…

OLE

OLE

Paper
Greg King

Paper
Chris Russ

Paper
Timothy Knox

Tech Support

Opportunities
in the Market

Changes in
the

MacMarket

Code Clinics
&

Roundtables

Code Clinics
&

Roundtables

Open Session

Registration
opens at

8:00 am in
Operations

Lunch

Bash Apple

Debugging

Hacking
OpenDoc

Symantec
C++ in Depth

Intro to PPC
Assemby

Optimizing
for PPC

Copland
Kernal

Copland
File System

Paper
Grant Neufeld

Paper
Shane Looker

Paper
Chris Haupt

Copeland
Overview

Universal
Headers

Frameworks

Contracting

Setting Rates
& Getting

Work

Project
Management

Theory &
Reality

Don’t do this
it doesn’t work

What’s new
in MacApp

QuickDraw
GX

Programmer
Burnout

Installation &
Distribution

OpenTransport

Paper
Roger

page 1 4 MacHack ‘95 Program Book & P a p e r s

7:30
8:00
8:30
9:00
9:30

10:00
10:30
11:00
11:30
Noon
12:30
1:00
1:30
2:00
2:30
3:00
3:30
4:00
4:30
5:00
5:30
6:00
6:30
7:00
7:30
8:00
8:30
9:00
9:30

10:00
10:30
11:00
11:30

Midnight
12:30
1:00
1:30
2:00
2:30
3:00
3:30
4:00

Ballroom C Ballroom D Session 6/7 Session 8/9 Session 4&5 Session 10

Lunch

Please check the daily updates for sessions and events which may be moved, cancelled or added.

Friday June 23, 1995

Writing an
OpenDoc
Container

Fanfare & the
Appearance

Manager

Hack Show

Code Clinics
&

Roundtables

Code Clinics
&

Roundtables

Trademarks &
Copyrights

Internet
Update:

Macs on the
Internet

Update:
Clipper &…

Intellectual
Property Rights

Development
Environments

PSP
To Be

Announced

To Be
Announced

To Be
Announced

To Be
Announced

Interactive
TVCopland

Changes in
the Toolbox DLLs for

the Mac
MacHack ‘95

Planning

Symantec
Tools Feedback

Session Schedule page 1 5

7:30
8:00
8:30
9:00
9:30
10:00
10:30
11:00
11:30
Noon
12:30
1:00
1:30
2:00
2:30
3:00
3:30
4:00
4:30
5:00
5:30
6:00
6:30
7:00
7:30
8:00
8:30
9:00
9:30
10:00
10:30
11:00
11:30
Midnight
12:30
1:00
1:30
2:00
2:30
3:00
3:30
4:00

Ballroom C Ballroom D Session 6/7 Session 8/9 Session 4&5 Session 10

Brunch

Please check the daily updates for sessions and events which may be moved, cancelled or added.

Saturday June 24, 1995

Paper
Oleg Kiselyov Code Clinics

&
Roundtables

Code Clinics

Women &
Hacking

Hack Awards Banquet

Closing

Movie Madness
AMC Theater

Ice Cream Social

page 1 6 MacHack ‘95 Program Book & P a p e r s

Conference
Map

MacHack is a non-smoking conference

The Care & Feeding of a Small Developer page 1 7

Introduction
This paper provides an overview of a number of

important areas for thought when contemplating the
leap into independence. It is something of a com-
bined essay and a pointer to more reading. In being
somewhat general, I hope to provide a catalyst for
your own thinking and research on starting a devel-
opment business. The ideas here are culled from the
personal experience of starting CyberPuppy Software
three years ago. When we started, none of the princi-
pals had any formal business experience. So in some
sense, we’ve had the best education possible, the real
world. My intention with this document is to impart
some of that experience, but to also form an intro-
duction to deeper discussion, both in the form of
talks and other writings. I look forward to hearing
from others with ideas to share and areas to explore.

Going Independent:
A Philosophical Sojourn
Have you found yourself approaching the end of

your college program not knowing what you wanted
to do? Have you written a cool game, placed it on the
nets as shareware, gotten that first check and thought
to yourself, “gee, could I make a living doing this?”
Perhaps you have woke up one morning wondering
why you are dragging yourself up at such an early
hour to make the commute to work. Maybe you’ve
just gotten through the last week of a seven day-a-
week, fourteen hour-a-day beta rush and are per-
plexed why you did it for someone who may or
may not thank you and is seemingly taking all of
the credit.
These and other reasons are often the incentive for

folks to contemplate the entrepreneurial life-style.
Why are you thinking about it? Is it curiosity? A
really novel idea that just *has* to get out to others?
Fame? Fortune?
One thing you must really enjoy is hard-work and

pain. According to recent industry reports, during

1994, only 4% of software firms were profitable
[Gloster95a]. In general, of the roughly one million
businesses started in the US each year, 40% will fail
during their first year. Within five years, more than
80% will have failed. Of those surviving, roughly
80% of those will fail after five years [Gerber95]. In
our industry, the generally accepted odds are worse.
Approximately 1 in 10 companies survive their first
year. The emotional and financial strain these odds
place on the new entrepreneur should be considered
when evaluating your career path.
The most important first step to becoming an

independent developer, regardless of the eventual
way you go into business, is to understand your
own motivations. What are your goals? Make a list
of the primary things that motivate you. Is it money?
Working on your own schedule? Cool new technolo-
gy? All are valid reasons, but without knowing what
you want, it is nearly impossible to plan a business
that will make you happy.
After identifying your motivations and desires,

you must next take stock of your resources. What
are your strengths? Michael Gerber [Gerber95],
describes three base skill classifications: The
Entrepreneur, the Manager, and the Technician.
The Entrepreneur is the dreamer, the part of your
mind that creates new ideas and thought processes.
The Entrepreneur is always wondering, and often
interrupts the functions of the other two traits. The
Manager is the organizer trait. It concerns itself with
the details of running the day-to-day operations of a
business. The Manager makes sure all of the t’s are
crossed and the i’s dotted. The Technician is the doer
trait. It gets the actual work done. It is the portion
that will bring the dream of the Entrepreneur into
reality under the schedule of the Manager. Most tech-
nical people will favor the Technician trait, and they
will start their business in this mode. The important
thing here is that you must recognize each trait as
important, and balance their contributions to make

The Care and Feeding of a Small Developer: Or How I
Stopped Worrying and Learned to Love the BOM.

Christopher Haupt, CyberPuppy Software, Inc.
cfh@netcom.com

This paper examines some of the issues that must be considered in the process of becoming and succeeding as an inde-
pendent commercial software developer. Whether the reader is currently a hobbyist, student, or professional program-
mer who is ready to strike out on his or her own, this paper provides some guiding principles culled from the experi-
ences of the founders of the author’s company and anecdotes from others that can provide some food-for-thought to the
new entrepreneur. Areas touched on in this survey include: the philosophical aspects of starting your own company,
legal and financial matters, product definition, ways of getting your product onto the market, and developer/publisher
arrangements. The paper then presents the concept of a small developer cooperative— an entity specifically aimed at
addressing some of the more onerous issues discussed above.

page 1 8 MacHack ‘95 Program Book & P a p e r s

the business successful. Gerber proposes a “Business
Development Process” that assists this balancing act.
Once you understand yourself, you can get on with

the task of organizing your business. There are a
number of excellent resources for understanding
the issues of entrepreneurialism and small business.
If you are totally naive to the ways of business, you
may want to investigate some of the many general
books available in any good library or book store.
[Brandt82] provides a list of “ten commandments”
to keep in mind during the formative and operational
phase of a new business. This source is a good place
for getting started. It doesn’t go into great detail on
any one subject, but rather points the way on such
details as business plans, distribution of controlling
interests in partnerships, planning for growth, etc..

Legal Bungee Jumping for Fun and Profit
After exploring your goals and motivations and get-

ting the first frightening glimpse at what the basics
behind running a business really are, you are poised
to make the leap. It was at this point in my experi-
ence that I began to appreciate what I was missing
from formal business training. Perhaps there was
some value in those business classes others were tak-
ing while in school. All I remember are long summer
nights in the graphics lab while my business student
“colleagues” were kicking back there second keg. I
feel better now. Having spoken with many a business
owner, it appears to be true that the School of Real
Life provides much more useful training than that
coursework could have. Still, I guess it would have
been useful to learn their jargon and formal theory.
But I digress. You are going to start your own busi-

ness, fine, but what form should it take? At this point
in our journey, I become somewhat US-centric. Fill in
some of the following paragraphs with the appropri-
ate information from your home country.
First, what are going to name yourself. While not

mandatory for some of the various business entities,
creating an identifiable mark for yourself is very use-
ful. Additionally, your company name is legal proper-
ty. As such, it adds value to your company, especially
over time as it becomes well known among your cus-
tomers. Choosing a name other than your own really
requires a search of current trade names to avoid con-
flict with other companies. You don’t want to start
your business with a copyright or trademark infringe-
ment suit! Assuming you can find a unique name you
like, you will need to register it. Depending on your
state, you register with your city, county, or the state
itself. This is generally an inexpensive process,
although the search process can have some cost
behind it if you have your lawyer do it.
Once you get your name, you can now get things

like bank accounts using that name. You will be using

your “DBA” (Doing Business As) certificate for this
purpose.
OK, you have a name, but what kind of entity will

your company be?
Each choice has its pros and cons, and the best way

to analyze them is to have a specific idea of what you
want to accomplish, who you want to work with, and
what your relationships are going to be like with
other companies and customers.
A sole proprietorship is what you are if you are start-

ing your company by yourself. You do not need to fill
out any formal paperwork. The proprietorship
requires some minimal extra tax preparation—you
need to fill out an extra form along with your person-
al tax forms. One negative aspect of a proprietorship
is that it does not protect you from legal attacks. You
are liable for all suits, and your personal assets can
be attached to in the case of a judgment against
your company.
If you are forming a company with one or more

other people, then you can create a partnership. Like
a proprietorship, you need to do very little legally to
form the partnership. The partnership will provide
some tax benefits. Like a proprietorship, partners are
still individually liable in the case of lawsuits or
debts. To make things more scary, if any one partner
should be the target of a particular problem, all part-
ners are liable. It is very important to have a formal
agreement between you and your partners which
delineates your stake in the entity.
Finally, there are corporations. Here your get both

tax implications and significant personal liability pro-
tection. Additionally, you can have multiple share-
holders, providing different ways for allowing invest-
ment in your company. Corporations are much more
formal, legally and from an accounting point of view.
As such they are the most expensive entity to create.
Which one do you choose? Well, it depends. How

comfortable are you with risk? Are you alone or do
you have partners? How much starting capital do you
have? The most important thing to do at this point is
to find an accountant and lawyer you are happy with.
You must decide what your tax situation is—or how
you would like it to be. You must also figure out how
much liability you are willing to expose yourself to.
Your lawyer and accountant can help you with these
questions. Bob Schenot [Schenot94] provides a good
description of some of these points from the view-
point of a shareware author.

Case Study Part One: A History Lesson
My company, CyberPuppy Software Inc., was formed

in 1992 by myself and two partners. We were college
faculty who literally met and came up with a product
idea over a pizza lunch. We were talking about the
state of children’s software, and just decided “Hey!

The Care & Feeding of a Small Developer page 1 9

We can do a better job at kid’s creativity software than
most of that junk...” (Yeah, we were a tad naive, but
we did know a thing or two about our subject mat-
ter.) At the time, the most popular, and some might
say only real successful children’s creativity product
was Kid Pix. We decided to do a technological leap
frog, so Kid’s Studio was born.
We decided to incorporate for a couple of reasons.

We wanted to minimize our personal exposure to
lawsuits, and we wanted to be able to have multiple
shareholders for investment purposes.
We wanted to both develop and publish our concept.

We didn’t have a lot of money, and didn’t really know
many people in the industry we were leaping into.
We figured that at worst, we could develop the prod-
uct in a few months, and through a grassroots effort,
get boat-loads of copies into the hands of excited
children whose parents had wads of spendable cash.
Then we woke up.

You Got A Company, Now What?
Let’s assume that you’ve gotten this far. Now you

have a company, and you have some great product
ideas. You’ve decided you want to do entertainment
software. You have some money in the bank, enough
to live off of for a while, but not enough to publish
your own product. What next?
Now you have to decide the initial direction of your

company. Do you go ahead with your product idea,
simultaneously looking for a publisher? Do you
decide to go grassroots, shareware, or just give it
away? Do you shelve your idea and look for some
contract work to build up a bigger war chest?
All are valid approaches, and there are probably

many others. Let’s assume that you and a friend
decide to go ahead with building your product.
Because of your funding situation—in this case, let’s
assume you are self funded, [Gloster95b] is a good
discussion about other bootstrapping and financing
options—you choose to do a strategy/puzzle game in
the same vein as Oxyd, Tetris, or some such. You
won’t need a huge staff, you can coerce some local
college art talent to provide you with some nicely
rendered custom graphics. A friend who is a MIDI
wiz can provide some snappy music and sound
effects on the cheap. You avoid high costs and legal
problems by not using copyrighted content.
The technical aspects of such a project are left to the

reader as an exercise. Of course, a word to the wise is
to make sure you are well organized, [McConnell93]
and [Maguire94] should definitely be required read-
ing for the new team.
Let’s address two more business related problems.

First, what should your game or program do, and sec-
ond, how do you make money?

Market Research is More Than
Comparing Safeway to Acme
What should your product do? How can you make a

lot of money with it? These are the kinds of questions
you will have to answer through market research.
Usually, the first product ideas for a new company

come from the founders’ sense of what interests them.
You should classify these projects by what I call the
“esoteric-filter”. Is the program a real niche type with
a potentially limited audience, or would it be of wider
interest. This is the difference between a beer-bottle
labeler program and DOOM. Usually, this judgment
call can be safely made via gut instinct. If you are
having trouble, however, it is important to get some
potential customer feedback.
The first step is to understand where the portion

of the industry you want to compete in is going.
Frequent analysis appears in industry journals, often
sponsored by the Software Publisher’s Association
(SPA) or independent research firms. [Wiegner95]
provides one such general outlook, showing the
growth patterns for the personal computer software
industry as a whole.
An easy next step for your research is to know the

competition. Are there other products out on the
market, either retail or shareware/freeware that are
similar? If so, is your product different enough to
pique the interest of owners of competing products as
well as new customers? If not, go back to square one.
In either case, get your hands on as many different
products as you can. Make a list of features that work
for you, and those that don’t. Ask users on the net
what they think about the different products. Target
users who represent the customers you hope to cap-
ture. If you are developing educational software, for
instance, ask individuals and school representatives.
Competitive research helps you refine your feature

list. It also shows you what the currently hot prod-
ucts are. For instance, as of this writing, firstperson
maze games are very popular. After DOOM took off,
a number of popular follow-on products came out for
most platforms. You can use this kind of information
to determine if an area is getting too saturated. If
there are more than a dozen of this kind of program,
is the market space getting too crowded? Also, does
any one vendor have a majority of the market share
for that kind of product? You can get this information
from industry analysis. Sources such as the SPA
publish breakdowns of key market groups. Specific
subsections of the industry are often served by special
trade organizations. Entertainment (and education
to some degree) is served by the Computer Game
Developers’ Association (CGDA), which publishes
a regular newsletter with market analysis. Check out
the Internet news groups for a sense of the pulse of a
particular area. What products are being mentioned

page 2 0 MacHack ‘95 Program Book & P a p e r s

most often? Which ones are getting slammed? Why?
[Schenot94] and [Moore92] both provide additional

hints on refining your product idea. You should try
to develop a product that fits within a hot category
(or an anticipated hot category if development is
lengthy). Your product should in some sense
“leapfrog” over the competition. What is the WOW
factor? This may be better technology—like a real
color, real-time rendering engine in your game—or
better functionality—as in easier to use features,
more options, etc.. [Radin94] and others agree, if
your project is just another me-too type of product,
you may as well throw your startup money away. Plan
to blow the competition away. Test your ideas against
the common mistakes described in [Marriner92].
Marriner enumerates the most common mistakes
made when nearing launch time of your product.
Many of these can be caught and fixed at the product
definition phase.
Unless you are starting out with a lot of cash and a

full team of programmers, designers, artists, etc.,
you should concentrate on what a small, focused
team does best. Go for the niches in which the larger
players just can’t seem to compete. As a startup, you
have the flexibility to change instantly as the market
moves. Considering the production values of today’s
multimedia games and products often call for
US$500K plus budgets, look for those cracks in the
market where you can work on establishing a beach-
head. [Estvanik95] discusses such strategies. If you
are doing entertainment, look for “genres that can
produce crisp, tight little games: intricate puzzles,
strategy games, even wargames.” Utility programmers
might shoot for projects that can add to the latest and
greatest OS features. Or, be retro, support all of those
users out there with older hardware and older soft-
ware. Frequently the larger companies must migrate
their packages on to follow the customers on the
middle bulge of Figure 1. Take advantage of the folks
sitting on either side. Both could be lucrative.

Figure 1. Technology Adoption Curve

Case Study Part Two: The Wrath of Pup
In 1992, when we formed CyberPuppy, we had a

mission in mind. We had been looking at the chil-

dren’s creativity market and were not impressed with
what we saw. The majority of schools and homes that
we interviewed were using KidPix, a cool, but dated
painting package. We wanted to give kid’s something
more. Being that one of our personal interests was
story telling, we decided that we wanted to give kids
all of the potential tools that they would need to put
together a full presentation. Our philosophy has
always been that too many adults don’t give children
enough credit for innate intelligence and creativity.
Given very powerful tools, kids will do amazing
things that many adults would be hard put to accom-
plish. We modeled are plans for products around this
philosophy and an observation I developed that com-
puter users in general can be classified as in Figure 2.

Figure 2. User Sophistication Characteristics
Kids and power users tend to sit on either high

point of the curve, while the majority of users fall in
the trough. It is interesting to note that as users get
older, they tend to sink in their usage of power fea-
tures on a day to day basis. It is also interesting to
note that as the computer user population ages, this
curve will change, flattening out somewhat. There
will always be a majority in the dip, though, as the
mentality changes to a “gotta get work done” mode.
But I digress. Following the above, we came up with

Kid’s Studio, a presentation and movie making pack-
age. It was designed to completely leap over the com-
petition of the time, both in overall functionality and
performance. A year after it was on the market, it was
recognized by the SPA as the best creativity/produc-
tivity tool for educational use. We had finally broken
through!

Turning SuperWizMagic Into Big Bucks
The name of the game is customers, customers, and

more customers. From the customers, all else flows.
Hopefully that includes a healthy dose of cash and
credit card numbers.
It can seem counter-intuitive at times, but for your

first break into the market, giving away as much
product for little or no cost is often one of the best
strategies. Keep in mind that if your plans are to be
more than just a contract developer, your most
important asset over time will be your customer list.

The Care & Feeding of a Small Developer page 2 1

If your customers are happy with your products,
they will tend to continue to buy both new products
and upgrades to current programs. For many prod-
ucts the cost-of-goods (COG) is less than US$2, but
the potential upside is five or ten times that, at least.
Continuously search for new and creative ways to

gather mind share and build that list. [Kawasaki90]
is one of the ultimate sources for cultivating an evan-
gelical outlook. You will make customers happy, and
possibly garner the attention of the press as well.
Okay, you can give stuff away, but how do you make

any money? Here I briefly touch upon four paths.
The first three, shareware, direct marketing, and low
cost retail, make the assumption that you are your
own publisher, or that you have a significantly flexi-
ble enough arrangement with a publisher that you
can target some channels on your own. The fourth
approach is to become a “pure” developer, linking up
with a publisher to handle marketing, sales, distribu-
tion, etc..
[Schenot94], [Radin94], and others agree that a

good marketing and sales plan will involve a mixture
of channels approached together. While it is possible
to scratch out a living by pursuing just one channel,
a concerted effort can have significant advantages.
Here, I will briefly discuss a few channels, leaving
the process of building a plan of attack for selling
your software as an exercise.

Shareware
Shareware is perhaps the channel with the greatest

confusion associated with it. This can probably be
traced to its evolution over time. During the earliest
days of microcomputers, shareware was the source
for many new and exciting products. Often these
programs would be free. Shareware would often be
written by individuals who were primarily interested
in solving an interesting problem, or creating a neat
piece of software that they would use. Today, much
of that motivation is there, but profits seem to play
a bigger role. The shareware channel is being used
more often by companies of various sizes to promote
their product and build a customer base [Gerrold94].
From that base, they hope to lure users into buy-
ingthe commercial counterparts of the shareware
product. The try-before-you-buy for little or no cost
model of shareware provides a powerful sales tool.
According to surveys conducted of shareware

authors, shareware is not the road to quick fortunes
[Garrett90], [Corbier94a], [Schenot94]. Of the sur-
veys conducted in 1990 and subsequently in 1994,
the average selling price has stayed about the same
(approximately US$15 for Mac programs, US$30
for DOS and Windows) [Corbier94b]. According to
the surveys, an estimated 1% to 10% of the users of
shareware programs actually register. Most authors

concur that the actual numbers are probably closer to
the low end of that range. The average income over a
product lifetime period is $3220 according to
[Garrett90].
There are certainly some standout exceptions to

these numbers, but for each of those highly visible
money makers, there are hundreds of zeros. The key
to success is to build a high quality product that will
be useful to the largest possible segment. Your atten-
tion to technical detail and your marketing research
both play large roles. If your goal is to grow your
development company, then you should take advan-
tage of the shareware channel to attract a customer
base you can later upsell into. The income you derive
should be considered a nice secondary benefit.
To maximize your number of registrations, you must

make the process as simple as possible. Because your
software will likely travel around the world, you need
to consider the problem of support and payment from
different locales. While this can be done by an indi-
vidual, there exist a growing number of registration
services that you can outsource this work to.
Appendix 1 lists several such services. The benefit of
using a service is that they can take a variety of credit
cards, in addition to other forms of payment. Surveys
and individual interviews have shown that the great-
est number of payments comes through the credit
card avenue. (Especially since many of the interna-
tional issues of exchange are hidden from you.)

Direct Marketing
Soliciting business through the mail, telephone,

and increasingly, email or newsgroups is the venue
of direct marketing. There are really two important
aspects to direct marketing. First, it is your best
avenue for keeping in touch with your current cus-
tomers. The people who have bought your earlier
products, and even better, have registered, are the
most likely to spend more money on followon prod-
ucts or new programs from your company. The sec-
ond aspect to the direct approach is that it can garner
new customers if implemented well.
If you plan your product such that it can grow

with new features, new levels, new tools, etc., you
can ascertain a constant income stream, assuming,
of course, that it achieves some degree of popularity.
Episodic games, utilities, and content-consuming
programs are good examples of these kinds of prod-
ucts. [Schenot94] reports approximately 33% of
active users of a product will upgrade to a new major
version. Our experience at CyberPuppy corroborates
this; a major upgrade offered through direct mail to
our customers last year saw a 36% response rate.
Communicating with current customers is relatively

easy. You already have the names of people who are
supposedly interested in your product—after all they

page 2 2 MacHack ‘95 Program Book & P a p e r s

bought it and bothered to register. But what about
the second aspect of direct marketing, gaining new
customers?
This is the domain of the rented list. Mailing lists

are available from a number of sources. Often, lists
can be rented from major computer (and other)
magazines.
The trick to direct marketing when trying to

generate new customers is to find and rent the most
focused name list possible. [Schenot94] provides a
good starter table of list brokers on pages 146-147.
Magazines that cater to your target audience can be
contacted directly.
Once you have a list, the rules of thumb are to test,

test, and test some more. Be sure that the contract
you sign when renting a list will allow you to do
some test mailings. Different brokers have different
policies. What you want to be able to do is send out
several different small mailings, say of about 200
pieces, and discover what combinations of mailings
give the best results. After you are satisfied with the
response rate, then you can go ahead with a larger
drop. Direct mail that is focused can be very effective,
however, a decent campaign is not cheap. You can
expect to spend a good US$5000 on a 10,000 piece
mailing. A good response rate will be between 3%
and 8% Johnson92].
Because you generally can use a rented list once per

payment, you want to try to as quickly and efficiently
as possible capture some feedback from customers.
(Using a list more than once without renting it is a
Very Bad Thing. Most lists have some number of
“guard names” used by the owner to determine if
someone is stealing list usage. If you are caught,
you may be black listed from using that, and perhaps
other, lists ever again.) Every name that you get from
a reply card is a name you can permanently keep in
your database. Sometimes it pays to get the user to
contact you with a reply card or call even if they
are not going to buy immediately. Such names are
excellent candidates for repeat mailings. Often it
takes several pieces to build up some customers’
comfort level in a company and product. This
approach certainly makes more sense when your
product is more expensive and you can better
afford this war of attrition.
There is a whole art form to designing direct mail

that targets new customers. [Schenot94] [Radin94]
[Stone] are all excellent sources for guidance on a
direct mail campaign. One of the easiest things to
do is to start saving your junk mail. You will notice
that many of the mailing you collect are similarly
designed, even though one may be for a computer
product and the next for a music club. Some key
elements include:

• The product and its benefits should be simple to

understand
• The purchase of the product should entail low

risk to the buyer
• Response should be very simple: include a

postage-paid card, 800 number, etc.
• The offer should have an expiration date clearly

shown on the mailing
• The mailing should be as tightly focused as possi-

ble;
• Code your mailings so you can determine which

approach is getting the best response
• Involve the customer with the response: use stick-

ers, check boxes, puzzles, etc.
• Use repeat mailings (of your legal names!)

Low Cost Retail (LCR)
Low Cost Retail is a growing avenue for a number

of small developers. You may have seen some of the
racks in non-computer stores that indicate a LCR
publisher. The software products in these racks
usually form some kind of “meta-line” of the LCR
publisher. Products are low cost, and appeal to
impulse buyers and computer neophytes. Often,
the products are shareware items that have been
dressed up with a new, “exclusive” interface or set
of features.
The product mix in this channel appears to be most-

ly games, educational products, and some home pro-
ductivity items. [Estvanik95] discusses LCR from a
games point of view while [Schenot94] provides a
more in-depth treatment, and includes a list of LCR
publishers looking for products.

Others
Many other channels exist. Bundling, Internet and

On-line commerce sites, CD-ROM collections, and
self publishing are just a few more areas to explore.
The sources quoted in the above sections are good
places to start learning about these opportunities.

Publishers
You may decide that the problems of getting the

product out on the market, getting it built, handling
the sales calls, etc. are just not what you wanted to
do. If developing cool products of either your own
design, or excepting work-for-hire from an interesting
company, are more your speed, then you should con-
sider finding and linking up with a publisher.
The advantage of this avenue is that you can general-

ly concentrate on the technical aspects of your busi-
ness. You still have work to do in running your com-
pany, but the marketing and sales, distribution, and
support portions can be mostly forgotten.
There are two general routes to working with a pub-

lisher. The first is more of a contract programming
deal. In it, you work with the publisher to implement
a project that some other entity has designed. In

The Care & Feeding of a Small Developer page 2 3

essence, you are strictly a programming shop—the
creative aspects of coming up with a new product are
left to others. I won’t go into this option.
The second route is to design, build, and test a prod-

uct of your own. You only need the publisher to get
the product out onto the market and to supply some
needed income. There are a number of variations on
this, ranging from the programmer shop described
above to a fully affiliated label. I will concentrate
on the middle ground.
Developer/publisher arrangements work much the

way an author of a novel works with a book publish-
er. The developer comes up with an idea, researches
it, implements it, then tries to find a publisher who
thinks that it will appeal to a wide audience. The
relationship with a publisher often starts at the con-
ceptual phase, especially once you are an established
developer with a successful track record. As a new
developer, unless you have created a significant work
at another company, a publisher will want to see your
“portfolio”. In essence you bring a full featured proto-
type, or possibly a finished app, in for review.
Different publishers will specialize in different soft-
ware, obviously. If you have a new game, find all of
the companies that you can that currently have
games of the same genre. At this discovery stage,
networking is the most important thing you can do.
Go to industry shows, developer conferences, user
groups where companies will be visiting, and so
forth and bring your best work. The process is like
interviewing for a job, just a bit more intense.
With some good fortune, you will be able to match

up with a publisher that believes in your product and
your development team. At this point, the fun begins
to create a contract. Most developer/publisher
arrangements work on a royalty basis with some sort
of cash advance. Typical royalty amounts fall within
the 8% to 15% range of net receipts. This amount
depends greatly on your past experience, product
type, and negotiating skills. It is also dependent on
how much work has yet to be completed on the
project. Often when projects are in earlier stages
of development, a cash advance will be granted to
assist in the completion of the program.
Royalty percentages seem really low, but you must

bare in mind that the publisher is taking the greatest
portion of risk. Your product may never get complet-
ed, needs to be built, marketed, distributed, adver-
tised, and may still bomb in the marketplace. In con-
trast, percentages for affiliates or pure distribution
agreements can often have 75% going to the develop-
er and 25% to the other party.

Case Study Three:
Luck Helps In Finding a Partner
When CyberPuppy was searching for someone to

help us publish Kid’s Studio, we didn’t really know
what kind of arrangement we were looking for. We
had assumed that we would actually publish the
product, and just look for distribution assistance.
Being relatively new at the game at that point, we
didn’t really realize that the publishing aspects alone
were so expensive. A proper product launch can
easily run US$400K; marketing, sales, and manufac-
turing costs will usually be twice or more what devel-
opment cost.
Our lucky break came while visiting as many poten-

tial companies as possible. We were going around
showing our early versions of the product, until a
fortuitous meeting with Maxis. Maxis was in the
process of setting up an affiliate label program and
wanted to expand its product line with other creativi-
ty and children’s products. Our product fit the bill,
and we became affiliate number two. It was that expe-
rience that gave us the best education on what getting
a product sold through to customers really takes.
Later in Kid’s Studio’s life, the product was sold to

Storm Software. Storm wanted to enter the consumer
space, including children’s software. Storm had evalu-
ated a number of products, but its staff most enjoyed
Kid’s Studio. CyberPuppy actually received the initial
call from Storm asking about the product’s availability
from out of the blue. Sometimes your product will be
your best calling card, especially if you are getting it
into customer’s hands in some fashion. Keep in mind
that LCR and some of the CD-ROM distribution
channels often find their products by scanning the
nets for excellent shareware.

Software Development Contracts:
Roadmaps to Fortune or Ruin?
Upon finding the publisher of your dreams, you

must hammer out a contract which will explicitly
detail such things as deliverable schedules, royalties,
payments, and other legal aspects of the deal. The
two most important tools needed at this stage in your
business are your ability to negotiate and a lawyer
who deals with software contracts on a frequent basis.
Negotiating a developer/publisher deal is largely

effected by your experience in the genre and your
credibility. To earn these attributes, it takes time and
hard, high quality work.
Regardless of whether you are a neophyte or an

experienced developer, many of the issues are the
same. [Gloster95a] points out a number of key points
that you should carefully consider and negotiate to
the best of your ability.
The first point covers royalty rates. As described

earlier, in this area you may have the least room for
negotiating. Larger publishers have the clout to
demand smaller rates, and the reverse is usually true
of smaller publishers. Why go with a larger firm

page 2 4 MacHack ‘95 Program Book & P a p e r s

then? Generally, you have to assume that they have
more resources at hand to sell units. More units,
even at a lower royalty, can mean more money for
you. Even more importantly, if you can negotiate
access to customer lists, you can build up your data-
base much more quickly. Often publishers will accept
so-called “step-up” royalties. Step royalties are those
calculated over time based on the number of units
sold. While you may start at a lower percentage X,
after n units are sold, you will start getting X + Y
percent. Often you can negotiate multiple steps.
Keep in mind, though, the reality of selling many

units. A trap some developers fall in to is to accept
a really low initial royalty, with significant incremen-
tal steps for large unit sales. In today’s blood-bath
market, selling 50,000 or more units is significant,
and selling over 100,000 qualifies as a best seller.
Regardless of royalty rate, you will want to work out

a royalty advance schedule that meets your anticipat-
ed needs. Payments are generally made on comple-
tion of milestones agreed upon in the contract. Be
certain that the advance you receive covers all of
your calculated costs. Include all salaries, develop-
ment costs, and a buffer to cover unforeseen expens-
es, delays, problems, and something you can put
away for times between projects.
The second important issue is royalty calculations.

The dollar amount used to calculate the developer’s
payment can wildly effect the amount received.
Usually a net revenue base is used. This is the

amount left after the publisher adjusts his gross
by deducting expenses and return reserves. Keep
in mind that the publisher’s gross rarely starts at the
street price. Publishers will usually sell product to
distributors and stores for 50% to 60% of the stan-
dard list price. The publisher will try to deduct as
much as possible from this gross before calculating
the developer’s cut. It is in your best interest to define
the deductions as narrowly as possible. [Fishman94]
and [Gloster95a] provide good general descriptions
of these calculations.
The third point includes royalty recoupments.

The compensations you receive during milestone
payments are normally considered advances against
future royalties. The publisher will specify how
those advances are to be repaid in your contract.
Depending on how this is structured, it will greatly
effect when you will see any future income from
your product.
The standard method is to not pay the developer

until his royalties earned at the current percentage
of net revenue exceed the advance. This procedure
can take a significant time, especially if the product
sells slowly or is a low cost product. Even worse for
the developer, given today’s cost of goods, it is reason-
able to assume that the publisher will have made a

decent profit long before he had to start paying the
developer again.
There are a number of ways to work around the

standard method. [Gloster95a] suggests several.
The developer could negotiate a “shadow” royalty
rate on the first Z units sold. This rate would be at
higher than his normal rate, thereby paying back
the advance at a quicker pace. The developer and
publisher could also agree that when a specified
number of unit sales are achieved, the advance is
considered paid off. Perhaps an even better technique
is to negotiate an alternate unit of calculation. In this
method, some portion of each unit sold will go
towards the repayment, while the remainder will be
paid out to the developer. In this way, you will see
some cash flow immediately.
A fourth major point is that you need to consider

what is covered by the contract, and what you will
earn a royalty on. Publishers will want all rights to
future related works derived from the product. A
publisher wants to be sure that if the program is a
hit, he can cash in on sequels, new uses, ports to
other platforms, etc.. You should be sure that your
royalties will be extended to cover these new items.
It is usually possible to keep royalties coming even
if the new works are implemented by other develop-
ers, albeit at a lower amount. Keep in mind that a
publisher who paid for the development of the prod-
uct will usually be considered the owner of the code
and related materials. If you have developed technol-
ogy which is of general use to your work, and have
included this in the current product, you will need
to either exempt it from publisher ownership, or
license it back to yourself if you are selling it.
Gloster’s last major point for consideration is cover-

age of termination issues in the contract. Standard
publisher agreements will allow the publisher to
reject milestone components and subsequently
terminate the contract if the problem is not resolved.
Boiler-plate agreements will often state that such can-
cellation is “at publisher’s discretion, for any or no
reason.” It is extremely important to nail down
several issues. You must know who the publisher’s
representative is to be that will be authorized to
accept or reject milestone deliverables. That person
should have a fixed amount of time in which to
respond to each delivery. If after the expiration of
that time no word is received, it can be assumed
that the milestone was acceptable to the publisher.
If the deliverable is rejected, the reason for the rejec-
tion should be clearly stated and there should be a
reasonable period of time given to the developer in
which the problem can be corrected.
These five major areas are key points in the

developer/publisher contract, and are usually the
focus of much negotiation. There are, of course,

The Care & Feeding of a Small Developer page 2 5

many other standard contractual components.
The general structure of a developer/publisher

agreement is shown in the prototypes provided in
[Fishman94]. [Brown95] describes the key structural
points of such agreements and explains the impor-
tance of each section. Most of the time, the initial
contract will come from the publisher, and will be
a boiler-plate document with minor modifications.
Usually this means that it is heavily slanted in favor
of the publisher. You will need to carefully go over
each provision to ascertain it meets your needs and
the agreed upon stipulations of your negotiation. You
will also want to be sure that special items you have
agreed upon are included. Occasionally, the publish-
er’s lawyer will just send along the generic boiler-plat-
ed contract, and whole issues may be left out.
For those who want to get a head start on some of

the legal aspects revolving around the development
contract, several decent resources exist. [Fishman94],
[Landy93], and [Smedinghoff94] are books that
describe key agreements and provide the forms
necessary for doing it your self. They are all written
by lawyers, and for simple matters, they are quite
satisfactory. One of the most important issues you
will want to research is that of owning what it is
you are selling. This will be demanded of you by
your publisher, and you publisher contract will
require certain warranties and representations to
that effect. This is especially true of copyrights and
licensed materials. The above references provide
some good tools for collecting required assurances.

Dealing With People: A Necessary Evil
One of the most difficult areas for Technologists is

in negotiation and management of people. To create
a successful business, you will need to have some
extroverted blood within yourself or on your team.
While this topic is certainly broad enough for whole
books, I wanted to explicitly mention it as something
to think about, especially given the deep and often
stressful issues of contract negotiation.
If you feel uncomfortable talking to large numbers

of people, negotiating a deal, or managing a team,
you should either work towards breaking down that
barrier or find someone you trust that will join your
company. A couple of useful resources we keep
around include: [Freund92], which is a great
general treatment of the negotiation mind-set;
and [Whitaker94] and [Maguire94], both of which
examine the often fun yet tricky road of making a
technical team work.

And Now for Something Completely
Different
Okay, I have now gone on at some length regarding

some of the issues you will need to consider in start-
ing your business endeavor. But what about A big

issue that seems to occur with coop-like structures
is political infighting. As the coop grows, it often
fractures along different lines. Some forethought
would be required to keep the process fair. Perhaps
the size of a coop would need to be managed as well.
A slight variation on the coop idea is to have what I

call a publisher pipeline. Especially in the case where
one development company has a good relationship
with a publisher, it may be possible to have that
developer act as a conduit between the publisher
and new developers. This could work in a number
of ways. In one, the developer almost has a pseudo-
affiliate type relationship with the other developers.
In this case, the main developer acts as the communi-
cation pipe to the publisher. The arrangements
between the pipelining developer and the new
small developer could possibly be in the form of a
sub-contracting arrangement.
Another pipeline approach would have the primary

developer act more as an agent for the new small
developer. In this case, the pipelining developer
puts the publisher and the new developer in-touch,
and if the deal works out, gets a finder/agent’s fee
for the transaction. This is probably the simplest of
the above arrangements.
As you can see, there are many ways that developers

could work together in a mutually beneficial way. It is
our hope that some form of these (or other) relation-
ships can be built. We are hoping to start the dialog
process now, and see if there is enough interest to
follow through with more formal activities.

Fin
The purpose of this mini-treatise has been to provide

enough coverage of a broad area to give you impor-
tant issues to think about on the path to forming
your own development company. If it is helpful
enough to point you in the direction of further
research, then I feel it has been successful in its
mission. The document as a whole is an ongoing
project with CyberPuppy Software. We are trying to
pull together such resources for our own ongoing
use, but also for sharing with the larger community
as a whole. If you have information you feel would
be useful to new developer-entrepreneurs, please
feel free to send it along and I will include it in our
archive. We hope to continue this dialog dynamically
on the nets and in person; please do contact us if you
wish to participate.

Bibliography
Brandt82] Brandt, Steven C., Entrepreneuring: Ten

Commandments for Building a Growth Company. New
York: Penguin Books USA Inc., 1982.
[Brown95] Brown, Marc E., “Software Development

Contracts.” Dr. Dobb’s Sourcebook, No. 239 (1995),
pp. 61-64.

page 2 6 MacHack ‘95 Program Book & P a p e r s

[Corbier94a] Corbier, Daniel, Shareware Author
&User Case Study. 1994. (This shareware document is
available on the FTP site listed in the Resources sec-
tion of this document. email: CORBIER@delphi.com)
[Corbier94b] Corbier, Daniel, Shareware Author &

User Case Study Summary. 1994. (Available as in
[Corbier94a].)
[Estvanik95] Estvanik, Steve, “Guerrillas in the Mix:

The Lone Wolf Transmogrified.” The CGDA Report,
Vol. 1 No. 4 (1995), pp. 10-12.
[Fishman94] Fishman, Stephen, Software

Development: A Legal Guide. Berkeley: Nolo Press,
1994.
[Freund92] Freund, James C., Smart Negotiating.

New York: Simon and Schuster, 1992.
[Garrett90] Garrett, Kevin, Shareware Author

Survey. Available on Apple Developer Mailing CD-
ROM.
[Gerber95] Gerber, Michael E., The E Myth Revisited:

Why Most Small Businesses Don’t Work and What to Do
About It. New York: HarperCollins Publishers, Inc.,
1995.
[Gerrold94] Gerrold, David, “Why Do You Think

They Call It a Medium?” PC Techniques, Vol. 5 No. 4
(1994), pp.106-109.
[Gloster95a] Gloster, Dean M., “The Art of the

(Multimedia) Deal: An Overview of Key Points in
Negotiating CD-ROM Development Agreements.” To
be published in an upcoming journal. Contact author
at glosterd@alhooked.net
[Gloster95b] Gloster, Dean M., “Beyond

Bootstrapping: Financing Alternatives for Game
Developers.” Computer Game Developers’ Conference
Proceedings, No. 9 (1995), pp.30-35.
[Johnson92] Johnson, Dave, “How Direct Mail Saved

Our Company: Overcoming Fear of Channel
Conflict.” Apple Direct, May 1992.
[Kawasaki90] Kawasaki, Guy, The Macintosh Way.

Glenview, Illinois: Scott, Foresman and Company,
1990.
[Landy93] Landy, Gene K., The Software Developer’s

and Marketer’s Legal Companion. Reading,
Massachusetts: Addison-Wesley, 1993.
[Marriner92] Marriner, Leigh, “Ten Common

Product Launch Mistakes.” Apple Direct, January
1992.
[Maguire94] Maguire, Stephen A., Debugging The

Development Process. Redmond, Washington:
Microsoft Press, 1994
[McConnell93] McConnell, Steve, Code Complete.

Redmond, Washington: Microsoft Press, 1993.
[Moore92] Moore, Geoffrey, “So What’s Your New

Program All About?” Apple Direct, February 1992.
[Radin94] Radin, Dave, Building a Successful

Software Business. Sebastopol, California: O’Reilly &

Associates, Inc., 1994.
[Schenot94] Schenot, Bob, How To Sell Your

Software. New York: John Wiley & Sons, Inc., 1994.
[Smedinghoff94] Smedinghoff, Thomas J., The

Software Publishers Association Legal Guide to
Multimedia. Reading, Massachusetts: AddisonWesley,
1994.
[Sternberg95] Sternberg, Sam, “The Business

Guide.” An electronic compendium of notes on inte-
grating your business with Internet resources.
Contact author at samsam@vm1.yorku.ca.
[Stone] Stone, Bob, Successful Direct Marketing

Methods. Chicago: Crain Books.
[Whitaker94] Whitaker, Ken, Managing Software

Maniacs. New York: John Wiley & Sons, Inc., 1994.
[Wiegner95] Wiegner, Kathleen, “Outlook 95.”

Software CEO Magazine, Vol. 2 No. 2 (1995), pp. 36-
37, 40.

Appendix 1: Resources

Associations:

Association of Shareware Professionals (ASP)
545 Grover Road
Muskegon, MI 49442

Computer Game Developer’s Association (CGDA)
555 Bryant St. Suite 330 Palo Alto, CA 94301 415-
856-4263 report@cgdc.com

Internet Mailing Lists:

Internet Marketing List (Discusses marketing efforts
on the nets) send email to:
LISTPROC@POPCO.COM with the body of the mes-
sage containing: SUBSCRIBE INET-MARKETING
Marketing List (Discusses general marketing

resources and issues) send email to:
majordomo@mailer.fsu.edu with the body containing:
SUBSCRIBE Market-L

Net Archives:

Personal Computer Developer Business Archive
URL: FTP://x2ftp.oulu.fi/pub/msdos/programming/biz

Shareware Registration Services:

Kagi Shareware, 1442-A Walnut Street #392,
Berkeley, CA 94709-1405 USA shareware@kagi.com
fax: 510-652-6589

MicroGenesis, ATTN: Brad McQuaid or Steve Clover
4055 Park Drive Carlsbad, CA 92008 USA,
voice: 619-729-2898, Toll-free Orders only line:
800-294-1302, Internet: bmcquaid@crash.cts.com,
America Online: Bmcquaid,
Compuserve: 75231,2277

Public (software) Library (PsL), P.O. Box 35705,
Houston, TX 77235 USA, voice: 713-524-6394,
voice: 800-242-4775, fax: 713-524-6398

C reating a Consistent 3D Interf a c e page 2 7

The Macintosh user interface has been in use for
eleven years now. It has been updated by Apple’s
Human Interface researchers in response to new
requirements of the Macintosh as well as in response
to developer conventions and experiments.
The most recent major change has been the 3Dish

look of dialogs and scroll bars introduced in System
7. While these changes are small deviations from
the older black & white elements they signaled the
coming of pseudo-3D interface looks from the
subtle to the hideous.
Many developers, unfortunately implement a

pseudo-3D look in their primary windows, but
neglect to carry the look through other windows
and dialogs in their application.

But First a Word From Webster’s
Before this paper continues, I need to define what a

pseudo-3D interface is. I use the term pseudo-3D to
distinguish the interface drawn on the screen from
the direct manipulation interface for 3D objects,
such as defined for QuickDraw 3D. While this may
seem bulky and unnecessary, as immersion interface
systems become practical, this distinction will
become more important.
No matter what the appearance on the screen, all

the graphics used in the Macintosh user interfaced
are rendered in 2D, trying to give a 3D illusion.

Ruminations on User Interface
The core of good user interface is consistency.

The Macintosh interface is consistent throughout
applications (excepting Microsoft applications, of
course), and with elements such as standard
windows and controls, the same look and feel
is available across all applications. There are also
a standard set of menus in all correctly written
applications.
If consistency is so important for good interface

design (which it is) why are there so many variations
on a theme for pseudo-3D user interface design? The
answer of course is that nobody has set down (and
published) a consistent set of rules for how a pseudo-
3D interface should look. A number of issues have
been addressed (such as general look using MacApp
in “Working In The Third Dimension” by Jamie
Osborne and Deanna Thomas, in Develop 15,
November, 1993), but the guidelines have never

been complete. Also new interface elements crop
up at the rate of one or two every year. This paper
is an attempt to gather and codify a consistent inter-
face style. As such, this tends to be a living doc-
ument that will change slightly as time goes on.

Elements for a Pseudo-3D Interface
There are a number of elements to a pseudo-3D

interface which need to be addressed during the
visual design phase of a project. Trying to take a
nearly completed application and throwing some
gray into windows does not cut it.
Primary user interface elements are: windows;

dialogs; controls; menus; popup menus; and
window/dialog content display. Each of these
areas needs to be examined in light of the new
interface appearance.
The primary way of implementing pseudo-3D is

with gray coloring schemes. Unfortunately, not
everybody agrees on the gray shades that should
be used for the interface. It is important to remember
the purpose of the interface: to assist users in accom-
plishing tasks, not to hit them over the head with
how clever you are. Subtle colorings work best.
Using the lightest shade of gray (kRGB8BitGray1
in Table 1) for the general backgrounds works best
for several reasons. First the light background is
close to white, leaving the most contrast between
dark text and the background. Second, if you pick
a darker gray, any additional coloring needed in the
interface (such as shadowed areas) must become
darker still to provide contrast with the background.
Table 1 shows the numeric values for eleven differ-

ent gray shades evenly spaced along the brightness
spectrum. Most of the colors are provided in the
standard 256 color palette on the Macintosh, but
using that are not in the palette will map to the
closest gray value available. This is the palette that
should be considered standard when designing a
pseudo-3D interface. Note that gray colors are
always found along the axis of a color wheel, where
each color component, red, green, and blue, are
equal in value.

Creating a Consistent 3D Interface
by Shane D. Looker

The Macintosh is a popular computer in part because of its consistent graphical user interface. The interface metaphor
has been changed in a number of applications from a flat 2D interface to a gray-scale 3D interface. While this is not
necessarily bad, the mixing of 2D and 3D interface elements can look rather poor. This paper covers the major ele-
ments of a 3D interface and gives guidelines for implementing the interface in a consistent user friendly way.

page 2 8 MacHack ‘95 Program Book & P a p e r s

Table 1
Grayscale Values

For the best consistent results, use kRGB8BitGray1
for the background colors, kRGB8BitGray4, for the
shading areas of the interface, and standard white for
contrast areas against the Gray4 areas. Also remember
to following standard Macintosh lighting conven-
tions, light comes from the top left corner of the
monitor.
Some psychological element of this interface style

should also be considered during layout of the inter-
face. Elements that appear closer to a user seem more
accessible, and appear more inviting. Certain ele-
ments such as push buttons should be flush with the
primary surface in general. Putting buttons in a
recessed area makes them feel restricted, and less
likely for the user to push.

Windows and Dialogs
The standard window on the Macintosh is a flat

object. It appears to float over the desktop for a
small pseudo-3D illusion, but many people want to
enhance that effect. One common (and cheesy) way
to add “pseudo-3D” on a window is to just make the
window gray. This doesn’t look 3D, this just looks
gray. A much better approach is to add a small bevel
to the edge of the window content area, so the con-
tent area appears to become a raised work surface,
instead of a flat sheet of paper. In many cases, howev-
er, it is best to leave the window flat, especially if you
have a document-centric application such as a graph-
ics program or word processor. Instead, any special
areas of the window can be raised, such as a built in
tool palette.
The second most common place for 3D windows

is in dialogs. Using the standard modal and movable
modal dialogs give a window that has a 3D frame.
Adding a gray background to this dialog will usually
give you a good starting base for the dialog. The best
way to do this is to use a dialog template which has
a background color of your standard gray. The reason
this is important is because the standard frame has a
small border around the inside that is drawn in the

window background color. Without a custom dialog
color table (‘dctb’) this is drawn in white, while you
are trying to draw the background in gray, giving an
annoying border to the dialog.

Pseudo-3D Controls
Controls in a 3D interface are more problematic. In

the Develop article, a set of drawing adorners were
supplied to fake the 3D look, but they have several
drawbacks. First of course, is that you need to be
developing in MacApp, using only standard views
to make use of them. Second, the classes need to be
reworked to fit into MacApp 3.1.
A better solution in general is to use the public

domain 3D Buttons CDEF by Zig Zichterman. This
CDEF creates pseudo-3D buttons, checkboxes, radio
buttons, and icon buttons which follow the sugges-
tions from Develop, with the addition of button text
and icons shifting when they are pushed, but are
nicely self isolated in the standard Macintosh way.
Source code is also provided. (If you do use the
CDEF, contact Zig and send him a copy of your soft-
ware, he deserves it.) The only slight drawback to
using this CDEF is that you will need to create CNTL
resources for each of the 3D controls you use in a dia-
log box.

Figure 1
Samples of 3D Controls

Menus and the Menu Bar
One of the most important aspects of the Macintosh

interface is the use of menus in the menu bar. There
seem to be three possibilities when dealing with pull
down menus and the pseudo-3D interface: Give them
a gray background, use custom MDEFs to make them
appear as if they have a frame around the edge, or
leave them alone.
I’ve seen interfaces where menus were colored with

a background gray only. In this case the menu doesn’t
look 3D, it looks gray. Don’t even bother.
The second possibility is to actually write a custom

MDEF that gives a raised border around all the edges
of the menu when it is popped up. This can look nice
(especially when combined with cut-lines as
described later), but clashes slightly with the stan-
dard flat menu bar appearance. Also, since the con-
tent is raised into a work surface, the psychological
effect is that it should be able to be positioned like a
window (see above). This works well for tear-off

Constant Name D e c i m a l C o m m e n t
v a l u e

k R G B 8 B i t G r a y 1 6 1 1 6 6 Lightest gray
k R G B 8 B i t G r a y 2 5 6 7 9 7
k R G B 8 B i t G r a y 3 5 2 4 2 8
k R G B 8 B i t G r a y 4 4 8 0 5 9
k R G B 8 B i t G r a y 5 4 3 6 9 0
k R G B 8 B i t G r a y 6 3 4 9 5 2
k R G B 8 B i t G r a y 7 3 0 5 8 3
k R G B 8 B i t G r a y 8 2 1 8 4 5
k R G B 8 B i t G r a y 9 1 7 4 7 6
k R G B 8 B i t G r a y 1 0 8 7 3 8
k R G B 8 B i t G r a y 1 1 4 3 6 9 Darkest Gray

C reating a Consistent 3D Interf a c e page 2 9

menus, but the vast majority of menus are not tear
off.
I am also leery about combining raised pane

menus for tear-offs with flat menus for not tear-
offs, although the different format could give useful
information to a user about the ability to tear-of a
paned menu.
As mentioned above the menu bar is also normally

flat. It can be colorized easily to a gray color, but it is
non-trivial to make a pseudo-3D menu bar. (It also
creates some interesting philosophical problems with
the position of the light source. Is it in the top-left
corner of the main monitor, or does the light actually
shine from the apple as has been rumored?) Even if
the color is changed in the menu bar, when the user
switches applications, the menu bar color would then
change, which removes the perceived “solidity” of the
menu bar. Also, there are a number of utilities that
add icons to the menu bar which include gray in their
icons. Making a gray menu bar merely makes seeing
them more difficult.
The third possibility for menus is to leave them

alone. Keep them as they have been for years. I tend
to think this is the best solution, since adding pseu-
do-3D to the menus doesn’t seem to enhance their
usefulness, but can cause some visual distraction
(interface noise) to the user.

Popup Menus
Popup menus pose a slightly different problem, how-

ever. A popup menu appears in the content area of
a window or dialog. Often that area will have a gray
background, which can cause problems with popup
behavior.
There are two ways to implement a standard popup

menu. Draw the popup title and non-popped state
yourself, or use the standard popup CDEF supplied
in System 7. The easiest way to do popup menus
now is with the System 7 popup CDEF, but it has a
major problem: it doesn’t honor the control color
table associated with the control (as far as I can tell
at least.) When it draws the popup menu title, it
either performs an EraseRect to white under the title
or when popping up the menu it does an InvertRect
which breaks with a color background.
The best solution to this is to either draw the popup

the old way, using your own code to draw the title
and non-popped state of the menu , or to use the
System 7 CDEF to draw the actual popup area, and
handle the title drawing (and hilighting) on your
own. The latter method requires additional effort
and doesn’t work well in dialog boxes, because your
code is not called when the popup CNTL resource
is hit by the user. This requires additional filtering
in the dialog’s ModalFilter.
No matter which way you choose to handle the

popup problem, the popup title must be drawn on
the standard gray background when not in use, and
drawn in white when the popup menu is hilighted.
(Remember that the menu should pop-up when the
title is selected, also.) You can not simply call
InvertRect on the title rectangle, as is normally done
on white backgrounds. Inverting on color is not
well defined. You will normally end up with a black
rectangle with the title drawn in an unreadable
yellow color.
To fix this problem, you need to actually fill the

rectangle with black, then set the TextMode to srcBic
to draw the title correctly on top of the black rectan-
gle. The following code snippet shows an easy way
to draw the title of a popup, in either normal or
hilighted mode.
// Assuming that the graphics state is
// saved and restored around this code
oldTextMode = qd.thePort->txMode;
if (hilighted)
{

FillRect(&titleRect, &qd.black);
TextMode(srcBic); // Draw white on

b l a c k
}
e l s e
{

R G B F o r e C o l o r (& s t d G r a y B a c k C o l o r) ;
P a i n t R e c t (& t i t l e R e c t) ;
R G B F o r e C o l o r (& b l a c k C o l o r) ;
TextMode(srcOr); // Draw black on gray

}
GetFontInfo(&curFontInfo); // Could be
moved out
MoveTo(titleRect.left + 1,

titleRect.top + curFontInfo.ascent);
D r a w S t r i n g (t i t l e S t r i n g) ;
T e x t M o d e (o l d M o d e) ;

Window Content
The content of a window or dialog is the most

important part of a user interface. It is where primary
information is displayed and/or it is where the user
works. By following standard rules, you can assist
the user in working efficiently and in getting the
most our of your pseudo-3D interface.
There are a number of pseudo-3D interface elements

which can be added to a content area to aid the user.
But when you add elements, make sure the help the
user and are not being thrown in just to “spice up”
a window that you might think is dull. Elements
that can be very effective are: raised and lowered
panes, iconic buttons, cut lines, and tabbed panels.

Panes and Frames
Raised or lowered panes are nice convenient ways

to group items together for presentation. The pane is
drawn as a chiseled border around an area with a two
pixels border. The coloring of the border provides the

page 3 0 MacHack ‘95 Program Book & P a p e r s

illusion of height or depth. In my experience, two
pixels of frame width are much stronger than a single
pixel, especially with a light gray background color.
Since the light chiseled edge of the frame is white,
more area is needed for the eye to pick out the con-
trast between white and light gray.

Figure 2
Lowered and Raised panes

In the 2D interface world, we have used gray or
black lines to outline a group of items for a number
of years. These items are usually checkboxes or radio
buttons, and often have a label associated with them.
There are two different ways to group these items
together in the pseudo-3D interface; by placing them
on a raised pane, or by using a box composed of cut
line (described in detail, below). Figure 3 illustrates
the different techniques. The grouped items, which
often are relatively flat, may be put on a raised pane,
moving them closer to the user, seeming to make
them more accessible. Alternatively, cut lines can be
used to frame the grouping, leaving the objects on
an “island” in the window.

Figure 3
Two Techniques for Grouping

A lowered pane should normally be used for static or
“containered” items, such as static text, editable text,
or scrolling lists. The interface needs to provide visu-
al cues to the user about which items can be directly
manipulated, such as editable text, or a scrolling list,
as opposed to items such as explanatory text. There

are two things that can help make the difference
apparent. First, when a user can edit text or scroll a
list, put it on a white background. Static text should
be on the same color background as the window con-
tent. Second, the inside edge of the pane should have
a one pixel black border. This gives distinct edges to
the work area. Static text in a frame should not be
bordered except by the chiseled frame.

Figure 4.
Static vs. Edit Text Panes

There are several appearances which should be
avoided if possible with using raised and lowered
panes. Nesting panes within each other leads to
distracting height illusions, with items poking out
of the screen at the user or appearing to recede into
the distance. These should almost always be avoided.
Placing raised panes next to recessed panes can also

sometimes create strange effects, making an interface
hill effect. Panes above one another with different
levels don’t seem to be as distracting as side by side
pane differentials.

Iconic Buttons
Iconic buttons are a variation of standard push

buttons which have a picture representing a function
that will be performed when they are pressed. In gen-
eral, they should only perform the same functions as
menu items (i.e. verbs in grammar). The icon on a
button should be changed only if the action of the
button changes.
Iconic buttons should not be used to show state data

by changing their in/out pushed state. To show status
information, use icons which are not raised from the
surface of the window. This signals to the user that

C reating a Consistent 3D Interf a c e page 3 1

they can not be directly manipulated and are for
informational purposes only.

Cut Lines
A cut line is used to separate areas of a window.

It consists of one dark gray line above and one
white line below the dark line, making a two pixel
cut across the screen horizontally. If the cut runs
vertically, the dark line is on the left side of the cut.
They dark gray needs to be at least as dark as the
gray color used for the darkened sides of a pane,
although a gray one or two levels darker can also
be used to enhance the effect of they cut.
Multiple cut lines can be used to form a box for

framing, although the drawing becomes a little
trickier. With a cut line box, the white edge of the
cuts are offset slightly to the right and down for the
bottom and right edges respectively. Figure 5 shows
a blow up of a cut line box, placed on a black back-
ground to enhance the visibility of the individual
parts. Figure 3 shows a normally drawn cut line box.
The cut line box can actually be drawn quickly as
two simple rectangles, as long as the white line
rectangle is drawn first.

Figure 5
Blow Up of Cut Line Box

Tabbed Panels
Tabbed Panels are the newest up and coming inter-

face element. They can be difficult to draw correctly,
and the interface to multiple panes can be tough to
do correctly, as demonstrated by Microsoft Word 6.0.
There should never be more than a single row of

tabs in a window. Multiple rows cause ambiguity to
the user. When a tab is clicked and it isn’t in the
first row, each row of tabs must shift so the currently
active tab is positioned along the top edge of the cur-
rent panel. This is bad because interface elements
should not be moved around on a user, and each
tab is a distinct interface element.

Figure 6
A Tabbed Pane Dialog

When tabs are used in a dialog, the OK and Cancel
buttons should be on a level outsize the tab panel
area, as those buttons affect the entire dialog, not just
the current panel. Any buttons that appear on a panel
must apply only to that panel. Failing to follow this
rule causes the user to be uncertain about the results
of pushing a button.
Tabs should be drawn carefully to maintain the illu-

sion of a rounded edge. Figure 8 is a blow-up of two
tabs showing the left and right edges of a panel.

Figure 8
Tabbed Panel Edges

Note the wider border on the right edge of the
panel. Also the tab which is not active, does not
have a heavy raised surface, as does the tab marked
“Display”. This helps the user realize that it is in the
background and not the immediate tab. Note also
the black edge line which is required to firm up the
existence of the raised surface in this interface ele-
ment. Without a distinct edge, the cards fade into
the surface and lose all 3D appearance.
The largest drawback to implementing tabbed panes

is the difficulty in drawing the tabs programmaticly.
One potential solution is to create the tab edges in a
paint program, then load the images and draw them
to the screen instead of drawing them with code each
time they are needed.

Surprises and More
While creating a pseudo-3D interface may not seem

difficult, there are a number of small problems that
will crop up as you write and test code. One surprise
I ran into was that hilighting broke in some places. If
items were draw on the gray window surface itself,
they could usually be hilighted, but if the item were
something like edit text, or a scrolling list, on a white
background, the hilighting would just stop working.
After reading through the appropriate areas of

page 3 2 MacHack ‘95 Program Book & P a p e r s

QuickDraw, I finally found the problem. Hilighting
only works on pixels that are the same color as the
background color of the window. With a gray window
background, when drawing a white surface over it,
hilighting would always break.
There are two possible solutions to this problem.

Depending on your case either one might be appro-
priate. The first solution is to set the background
color of the window to white (or whatever color
surface you are working on) before trying to hilight
something. The second possibility is to actually use
the system hilight color and programmaticly draw
your own hilighting.
You might also discover that if you raise the contents

of a window, the standard Macintosh grow box no
longer looks correct in the corner of your window.
To fix that problem you will need to write your own
grow box drawing code, and implement a custom
version of GrowWindow. This is a non-trivial task,
but really needs to be done to make the pseudo-3D
interface look natural in your application. And on
top of that, your grow box growing code will need
to determine the color tingeing currently used by
the Macintosh, so your grow box matches the colors
found in the rest of the window frame. (This is
documented in Tech Note TB 33 – Color, Windows
& 7.0.)
One other note: These guidelines will almost certain-

ly change in the future (under the next major release
of the MacOS, most likely) and will have to be updat-
ed when that release becomes a practically reality in
the programmer’s life.

Special Thanks
The author would like to give special thanks to

George Storm of MacXperts, Inc. for helping iron
out some of the issues surround the pseudo-3D
interfaced elements outlined here. In particular,
his work on tabbed panes clarified their appearance
and functionality .

Reaching The Author
If you are interested in arguing points presented

here, or wish to make comments or contributions
to the guidelines I’ve set forth in this paper, you can
reach me electronically at:
L o o k e r 1 @ a o l . c o m

I would like to maintain this paper in a revised
version that can be used as a reference to people
who are interested in implementing a pseudo-3D
interface in their application. This document will
be available online via the World-Wide Web and/or
ftp service in the future.

The Design of Interactive Television Applications page 3 3

Programming, telephony, and cable television are
converging. Instead of three unrelated fields, we
are getting to a point where there is some overlap.
This will only increase with time. I am working
for Ameritech on a next generation interactive televi-
sion environment, which will bring all three areas
together.
Ameritech is developing an advanced, high band-

width cable network, along with new set top and
server technology that will enable us to deliver fully
interactive television, advanced computer connec-
tions, and who knows what in the future.
What kind of network will be put in? We looked at

a pure fiber optic network. This has a tremendous
advantage in bandwidth (in excess of 1GHz).
However, the cost of FTTC (Fiber To The Curb)
would be prohibitive at this time.

Consideration was also given to using existing cop-
per in an ADSL (Asymmetric Digital Subscriber Line)
configuration. While this would be far less expensive
than FTTC, it has several problems as far as band-
width goes. First, it only offers downstream (to the
house) bandwidth of around 2Mbs, barely adequate
for a single MPEG-1 video stream. Also, the upstream
signalling capacity is only 9600bps (hence the name
Asymmetric), which, while adequate for today s
needs would likely fall short in the future.
We instead chose to build a Hybrid Fiber-Coax

(HFC) network. In this layout, the backbone of the
network is fiber optic, and then at various neighbor-
hood distribution points (known as Video End
Offices (VEOs)), it is converted to coaxial cable. Each
VEO serves 500 homes, with four coaxial cables. This

offers the advantage of a high bandwidth backbone,
and a relatively low cost local loop. Even so, the coax
is specified with 750MHz bandwidth, a significant
increase over current cable TV, which is specified at
450MHz.
What exactly do all these bandwidth numbers mean?

Well, a single analog television channel requires
6MHz, which means that traditional cable TV opera-
tors can offer about 70 analog channels (4506 = 75,
however, the remaining 30MHz is used to provide
separation).
However, that same 6MHz can be encoded to carry

digital information. One encoding is 64 QAM
(Quadrature Amplitude Modulation), which provides
27Mbps in a 6MHz channel. A newer system, which
we will be using, is 256 QAM, which provides a
usable bit rate of about 40Mbps.
How does this relate back to digital video? Well,

MPEG-1 requires 1.5Mbps (not coincidentally the bit
rate deliverable by a CD-ROM). MPEG-1 will run at
higher bit rates with a concomitant increase in quality
(in fact, it is often used at 3Mbps, which provides
roughly VHS quality), but in essence MPEG-1
remains a consumer standard.
On the other hand, MPEG-2 was expressly designed

to provide broadcast quality compression, and starts
at 6Mbps, going as high as 20 to 25Mbps. The differ-
ence is not merely higher bit rates, but also some
changes and improvements to the compression algo-
rithms. Therefore, one 6MHz analog channel can
carry approximately 10 3Mbps MPEG-1 streams, or
about 6 6Mbps MPEG-2. The current plan for band-
width allocation is 450MHz for 70 analog multicast

The Design of Interactive Television Applications
Timothy D. Knox

The next generation of applications will be multimedia, and interactive television applications. In this paper, I will
provide some information about creating interactive television (ITV) applications, along with some specifics about
the approach taken by Ameritech.
First, I will detail the Hybrid Fiber-Coax (HFC) network. I will begin with the Video Operations Center (VOC),
out to the Video Serving Office (VSO), to the Video End Office (VEO), and finally to the Customer Premise
Equipment (CPE).
Next, I will detail the client/server nature of the application, and discuss the server complex. I will look at the various
elements of the server complex and the services they provide. I will also briefly touch on the interfaces to the outside
world. (I.e. How Video Information Providers (VIPs) get their data onto the platform.)
Subsequently, I will look at the Set Top Terminal (STT), and describe the hardware and operating system support
provided. I will also look at how applications are partitioned between the server and the STT.
Next, I will briefly look at the development environments available, such as MacroMedia Director (tm), Kaleida Lab’s
ScriptX (tm), and others.
Finally, I will detail some of the human factors issues involved with designing ITV applications. For example, there
is no keyboard, or mouse. Also, the interface must look good on a low-res television, rather than a hi-res monitor.
Counterbalancing these and other factors, there is the very high bandwidth available from the server to the STT.
This allows full motion video to be an integral part of the interface, something still difficult on desktop systems.
I will conclude with a brief look at where the technology is going, and where I believe things will be in five to
ten years.

page 3 4 MacHack ‘95 Program Book & P a p e r s

channels, and the remainder divided up as 30 chan-
nels for digital multicast, and 10 channels for
switched interactive services.
There will be three kinds of programming sent to the

viewer. The first is Analog MultiCast (AMC), which
is based on the traditional cable model, though there
will be a few simple enhancements, that make it clos-
er to the interactive models. The second kind is
Digital MultiCast (DMC), which will allow greater
interaction. For example, DMC would enable NVOD
(Near Video On Demand). A number of other appli-
cations would also be possible, though DMC would
not permit fully interactive applications. For that, one
needs Switched Interactive (SI). This is the most
interesting model for programmers, and the one that
we shall spend most of the rest of our time consider-
ing. However, be aware throughout the rest of the
paper that this is only one model, and that two others
exist, and will be used.
The network is based on the telephony model, to

some extent. It starts with a VOC (Video Operations
Center). There will be one VOC in the network (or
at most, a small number). Most programming will
originate at the VOC. The antenna farm will be locat-
ed there. There will also be many racks of computers
and disk drives for the interactive portions of pro-
gramming, which I will detail later.
Programs will flow out of the VOC to a VSO (Video

Serving Office). There will be one VSO per major
market area (e.g. Chicago, Detroit, Milwaukee, &c).
The VSOs allow for adding locally originated pro-
gramming. It is expected that the Ameritech region
will have six VSOs, one for each major city.
Each VSO will feed a number of VEOs, which will

act somewhat like central offices from the telephony
model. A VEO will be an unmanned mechanical site
that will serve as a bidirectional interface between the
fiber network and the coaxial network.
Finally, the signal will flow down the coax to an

individual subscribers home. In the home, there will
be one of two Set-Top Terminals (STTs). One will be
the analog STT, which will fairly similar to current
cable TV STTs. It will have a CPU, and be able to run
some pretty primitive programs, but it will not repre-
sent much of an advance over the state of the art.
The other STT is, not surprisingly, the digital STT.

This will incorporate a PowerPC CPU, several MBs of
RAM, several MBs of ROM, an MPEG decoder, and
graphics hardware. They are expected to run the
PowerTV operating system (created by PowerTV). I
will discuss this in more detail later.
A typical Service Application (SA) consists of two

parts: the Client Part of the Application (CPA), and
the Server Part of the Application (SPA). The chief
application running on the STT is the application
navigator. The navigator allows the user to select a

service application to run.
When the user selects an SA, the CPA is downloaded

to the STT by the navigator. The CPA calls the
Session Manager (SM) to request a variable band-
width connection to the server complex. The SM con-
nects the STT to an Interactive Application Server
(IAS), which actually runs the SPA. The IAS may also
talk to an Interactive Information Server (IIS). The
IIS is essentially a video pump; in other words, its
primary purpose is to stream video out to the differ-
ent SAs. There are a number of other computers in
the server complex that provide various and sundry
functionality, such as event data collection, credit
card authorization, and media asset loading and cata-
loging.
Because the SM can establish connections of varying

bandwidth, the CPA requests only as much as it
needs. For example, in a movies on demand applica-
tion, the CPA might initially request only, for exam-
ple, 20Kbps, which is enough to download the titles
of movies available. However, once the viewer has
selected a movie, the CPA would request a 3Mbps
MPEG-2 connection over which the movie could be
sent.
The SM allows the IISs and the IASs to be used to

optimum advantage, especially as compared to sys-
tems that require each SA to know exactly what
servers they are talking to. Also, since the IAS runs
the application, while the IIS is used only for stream-
ing video, it allows for better load balancing.
The STT OS will provide a set of APIs that will seem

very familiar to Macintosh programmers. The OS will
be event driven and multi-threaded. The STT imposes
some interesting restrictions on programming. The
chief one is the small memory footprint (no more
than 2MBs, approximately). However, the CPA only
needs to provide the code to control the display, and
to get viewer choices. The bulk of the application
resides on the server. For example, any relational or
object database systems will live on the server.
Take a home shopping application as an example.

The viewer will select, for instance, the Sears Home
Shopping Service in the application navigator. (See
Disclaimer.) The CPA will be downloaded. It will dis-
play the opening menu. The user selects the home
electronics section. The CPA sends a request up to
the SPA to access the RDBMS, and send down the
Home Electronics section of the catalog.
After receiving the home electronics index, the view-

er might select televisions. This results in another
request to the SPA, this time for the section regarding
TVs. The viewer will browse the different TV offer-
ings, and finally select the one to buy. At this point
the CPA will call on standard services that will dis-
play a credit card authorization box. The information
will be gathered and sent up to the server, which will

The Design of Interactive Television Applications page 3 5

then call out to get approval. Having received
approval, the viewers shipping address will be veri-
fied (presumably the same as the viewing location).
Then a TV will be sent right out.
Now, we come to the question that all real program-

mers are asking right about now, which is: What is
the programming environment? What tools can we
use? The answer is, the environment is many and var-
ied. Oracle MediaObjects, Scala InfoChannel, and
Sybase Gain Momentum are all possible candidates. It
is also possible that Kaleida Labs ScriptX or
MacroMedia Director could be used. The develop-
ment environment must support both STT and server
programming. Generally, there is a scripting language
available for the STT, often with the ability to support
external code resources written in C or other high
level languages.
It is quite probable that the CPA will never need to

explicitly call the SPA. The STT OS will provide APIs
to connect to the SPA by way of RPCs or CORBA
calls. In this way, the CPA can be insulated from the
details of the network, and can live as though it were
a full and complete application.
Obviously, the SPA must understand that it is run-

ning on a network. It is still being decided what
remote mechanism will be used. It could be RPC, it
could be CORBA, or perhaps even some combination
thereof.
It should be noted that interactive television applica-

tion development involves several paradigm shifts, as
follows. One, programming for television versus pro-
gramming for a computer monitor. Two, program-
ming in a client/server environment, rather than all in
one. Three, programming for a small footprint, high
bandwidth environment, rather than large footprint,
low bandwidth. Four, programming for a remote con-
trol, rather than for a mouse and keyboard.
First, programming for television. This presents sev-

eral unique features. One, television is inherently a
low resolution device. While even a small monitor
can easily display 24 or more lines of text, consisting
of 80 or more characters per line, a television can t
generally manage much above twelve lines of twenty
characters, and still retain legibility. After all, the
NTSC standard was designed for optimum display of
continuously moving images, not large sharp-edged
stationary objects like text. Also, things like one pixel
lines, while quite nifty on a monitor, just don t work
on a TV. Thirdly, television uses NTSC color space,
which is NOT the same as the RGB color space used
by most computers and monitors. It takes great skill
to choose colors that will look good on a television.
The second paradigm shift is from programming for

a mouse and keyboard to programming for a remote
control. Because there is no general pointing device, a
Macintosh-like interface with windows, menus,

icons, and such, would be extremely difficult to
implement. Instead, an interface with perhaps six or a
dozen hot spots would be used. Then, instead of a
pointer, there would be a moving focus. The focus
would be shifted from hot spot to hot spot by means
of arrow keys on the remote. The focus would likely
be indicated by lots of motion (perhaps a video clip
or color-cycle animation). There would also be a
select button on the remote, acting much like the
button on a traditional mouse; to wit, it would select
whatever hot spot had the current focus. A conse-
quence of this is to force users back into a very
modal, almost menu-driven, interface. While such an
interface is considered less helpful for general pur-
pose computer applications, for ITV applications, that
is exactly what the user wants. Just as no one com-
plains of the modal nature of bank s ATM, because it
is designed to accomplish only a very few extremely
simple tasks, ITV applications would be similar.
The third paradigm shift is to the client/server

model. Of them all, I believe this will be the least
traumatic. This particular change has been coming
for some time now, and we have developed tools to
simplify this. It is likely that the programming model
will incorporate either OSF DCE RPC s; or even a
CORBA implementation. Most CORBA implementa-
tions either have, or will soon have, C++ bindings for
their object request brokers. This allows the systems
programmers to hide the network stuff inside some
C++ classes, and lets the set-top application think it is
simply talking to a large class library. This is especial-
ly useful considering the rather limited work area
that the set-top provides to applications. We can put
all the difficult and large stuff on the server, which
will have considerably more horsepower to run the
server parts of the applications.
The fourth paradigm shift is programming for a

small footprint, high-bandwidth environment (i.e. the
set-top), rather than large footprint, low bandwidth
environment typical of most microcomputers today.
This affects such things as general programming
practices, as well as the design of the user interface
elements. It is likely, for instance, that code will be
highly segmented (as in the early days of Macintosh),
with each segment loading, running, setting up the
load of the next segment, and exiting. With the band-
width available for downloads (several megabits per
second), this will be far less inconvenient than it was
in the old days. There will also likely be a greater
push to use high-level scripting languages, as they
can accomplish more per byte than all but the most
tightly written assembler. In the matter of user inter-
face, the easy availability of almost unlimited band-
width on demand means that certain things that
would be difficult or impossible on a microcomputer
become not just easy but necessary on the set-top.

page 3 6 MacHack ‘95 Program Book & P a p e r s

For instance, consider a movies on demand applica-
tion. This lets the viewer select a movie from a list of
dozens or hundreds of movies, which is then beamed
to his (and only his) TV. In a PC based implementa-
tion, a likely interface would be a list of movie titles,
perhaps with a graphic still from each one to help the
viewer identify it. However, on a set-top, the screen
could be (for example) quartered, with each quarter
showing a video clip or commercial for a different
movie. The sound and motion would indicate which
clip currently had the focus, and then the viewer
could try before you buy.
Actually, there is another important difference

between a microcomputer and a set-top. A micro is a
general purpose computing device whose primary
purpose is to run user applications, and enable them
to accomplish their work. On the other hand, the
purpose of the set-top is primarily to prevent theft of
services, and only secondarily to serve the viewer.
Thus the set-top needs elaborate decryption hardware
or software, as well as an elaborate protocol set to
convince the Head End Controller (HEC) that it is
talking to a legitimate set-top, and that it has the
right to access the services that the set-top is request-
ing (in other words, did the viewer pay for the movie
in question, for instance).
What, then, does the future hold? Well, in the short

term, I think the advantage accrues to the newcomers
to the cable TV market, such as the telcos, because
they do not have the large investment in obsolete
technology that traditional cable providers are stuck
with. However, movies on demand, and even home
shopping with automatic delivery of products is not
going to make this the hottest market under the sun.
In the long run, it will be services that make or break
the marketplace. Offering the service applications the
consumers want is what will sell the service. The
industry is looking for the next Pong, or the next
VisiCalc; some application which would be reason
enough for Ma & Pa Average to buy the system.
(After all, techno-geeks like us will have already
bought in, but as history shows, we are too small a
market segment to keep all but the most narrow mar-
kets afloat.) Could it be interactive games? Maybe. Or
perhaps it is CD-ROMs online. But probably, the next
killer application is something all of the pundits have
completely overlooked. If you know what it is, please,
talk to me and we can discuss getting you on our
platform.

Acronomicon
ADSL Asymmetric Digital Subscriber Line
AMC Analog MultiCast
CORBA Common Object Request Broker

Architecture
CPA Client Part of the Application

DCE Distributed Computing Environment
DMC Digital MultiCast
FTTC Fiber To The Curb
HEC Head End Controller
HFC Hybrid Fiber Coax
IAS Interactive Application Server
IIS Interactive Information Server
ITV Interactive TeleVision
MPEG Moving Picture Expert Group
NVOD Near Video On Demand
OSF Open Systems Foundation
RDBMS Relational DataBase Management System
RPC Remote Procedure Call
SA Service Application
SM Session Manager
SPA Server Part of the Application
STT Set Top Terminal
VEO Video End Office
VOC Video Operations Center
VOD Video On Demand
VSO Video Serving Office

Disclaimer
Any and all products or product ideas mentioned

herein are not intended to represent actual Ameritech
products or offerings, and do not necessarily repre-
sent official plans of Ameritech, it partners, affiliates,
or subsidiaries.
All trademarks, service marks, registered trade-

marks, and others are the properties of their respec-
tive owners.

A D ream of an Ultimate OS page 3 7

Introduction
Operating Systems are commonly viewed from two

major standpoints: managing computing resources,
and hiding hardware idiosyncrasies while putting a
friendly face for a user. IMHO, providing a user-
friendly interface is the primary OS responsibility:
after all, a CPU doesn’t need any OS to run, nor does
it care much which code, system or user, it currently
grapples with. Nevertheless, with a notable excep-
tion of MacOS, MagicCap and Newton’s OS, operat-
ing systems have been thrusting upon a user a flood
of disparate interfaces, commands, and actions – all
are for doing essentially the same thing: filling in and
editing some list/table. Moreover, even internally
every major OS component – a file system, network
services, user management, terminal management, to
name a few – each implements and manages its own
private incarnation of a simple database.
It literally springs to mind that database services and

text/list editing are a core activity ought to be sup-
ported on the very fundamental level of OS. The
paper flashes a few images reflecting some particular
examples of how that unification could be done and
how one can work with it. Here is the preview:
MacOS is one of the very few systems around close

to the ideal: TextEdit has been elevated to the level of
a standard system (toolbox) service. It was the strong
statement that the OS is not only about managing
files and processes. Furthermore, deleting a piece of
text, a file, a directory, a file server connection – all
can be accomplished by the same action: highlighting
and dragging into trash. Still, one can go a little bit
further: for example, a list of processes conceptually

isn’t much different from the list of files. One can
imagine the Finder manage (arrange, get info, dupli-
cate, trash) files and folders that are not necessarily
ordinary files and folders, like processes, open TCP
connections, newsgroups, print jobs active and pend-
ing, to-do- tasks, etc.
Deep down, an operating system is nothing but a

manager of many databases. Indeed, a file system, the
process table, routing tables, list of known
AppleShare servers, revision control system (projec-
tor) data, Think C projects - they’re all databases.
Unfortunately, despite a sizable share of common
functionality and interface, every one of them is
implemented and managed separately. For example,
hashing, searching, cashing are used in many of those
databases (if not all of them), but each application
implements and re-implements them in its own way.
One would think that if a database manager were a
universal core program, one could take trouble really
polish hashing and caching, once and for all. It really
looks like a very good deal to trade a multitude of
“custom” database managers for one well-designed
distributed database manager.
Conventional databases are usually implemented on

the top of a file system. But the file system itself is a
database. Mac’s HFS and Novell’s file system even use
btrees and other “advanced” indexing schemes typi-
cally found in full-blown “industrial strength” data-
bases. For another thing, a hierarchical model is not
the only db model out there. So, why not to have an
Adabas-like or DB4-like or Oracle-like database
instead of the file system? After all, querying the
database for a Jan 1994 sales, and clicking on folders

A dream of an ultimate OS
Oleg Kiselyov

CIS, Inc & University of North Texas
303, N.Carroll, Suite 108 Denton TX 76201

oleg@ponder.csci.unt.edu, oleg@unt.edu, http://replicant.csci.unt.edu/~oleg/ftp/

This is a dream, and as such, it is made of shreds of reality shuffled and rearranged in sometimes bizarre combina-
tions. It has been brewing on for over 10 years out of dissatisfaction with many of the major modern Operating
Systems. Indeed, it is glaringly obvious that the only thing a user does at the terminal is requesting/reading/modifying
textual information, arranged mainly into tables/scrollable lists. Nevertheless, the user often has to use different and
completely disparate commands to achieve exactly the same modification, for example, to delete an item (line) from a
list as in: removing a line in a text document, removing a file, killing a process (that is, removing it from the list of
active processes) and canceling a print job. Furthermore, despite the fact that the OS is swarmed with tables – from a
hierarchical database of files to yellow pages maps, to a hash dictionary of an object file archive (library), to relative-
ly flat databases of IP routes, current processes, users, and code revisions – common database functions like inserting a
record into a “table” with hashing a key, retrieving a record/field using a simple/concatenated key and linking tables,
are conspicuously missing among the core kernel services. This paper is an attempt to imagine what an OS would look
like and how it would work if looking for a word ‘foo’ in something and deleting/closing/stopping this something, be it
a paragraph of text, a network connection, a subscribed newsgroup, a process – would all require roughly the same
sequence of mouse clicks/keystrokes, and would be understood and interpreted in the same spirit by the operating sys-
tem.

page 3 8 MacHack ‘95 Program Book & P a p e r s

“Sales”, “1994”, “January” are very related activities.
Only, a full-blown database provides a more flexible
interface for linking and querying records. Modern
databases have all facilities for storing images, sound
files, movies, etc. big binary objects. I wonder, what
else do we need files for?
Unification of user interface and the underlying

database functionality has one more important advan-
tage: ease of linking or mixing together, objects. I
imagine documents made of not only chunks of text,
but folders and applications themselves (or links to
them). Indeed, a document with a picture usually has
the text and the image in separate places, with addi-
tional information (link) as to how and where the
image should be displayed. Why not to store likewise
links to menus, applications, or remote servers, or
precompiled headers, or mailto: or other form or
anchor as well? The desktop is probably going to
look just like a homepage.
The rest of the paper shows how one can come to

these points and where he can go from there.

Everything is just editing
It is indeed. A document I’m editing is a list of lines;

if one edits a file in emacs, he presses \C-K (I press
PF4) to delete a line. When we list a contents of a
directory, we also get some sort of table or list (espe-
cially using ls -l or view-by-name). To remove a line
from this table, we use a different command, rm.
When we want to see which processes are currently
running, we use ps, or top, or ProcessWatcher. Again,
we end up with a table, but now we need to use kill
process_id (not even a process name) to “delete a
line” from the table. To delete a line from the table of
queued print jobs, we use yet another command,
lprm print_job_id.
Thus deleting a line, removing a file, or killing a

process or a route or an ARP entry all boil down to
essentially the same thing: removing a row from some
table. This is no coincidence. The uniformity runs
very deep, both on the level of implementation, and
on the level of presentation. Indeed, there is not so
many ways how one can manage a collection of
objects: it is usually some kind of list or tree. Also,
there is not so many different tricks how this collec-
tion can be presented to the user and be manipulated
by him. The only way people work at a terminal is
browsing and editing, that is, moving the mouse,
typing and pressing the PgDn key, if you think of it.
Disparate interfaces are not a consequence then of
some fundamental differences in user or system
activities, they are simply result of evolution: differ-
ent subsystem/services were written by different peo-
ple and modified by even bigger crowd.
Macintosh definitely stands out of the crowd. Many

functions within MacOS are accomplished by exactly

the same action (say, removing is by dragging into
trash, opening is by double-clicking). This is especial-
ly true with a Drag&Drop Manger installed. Even
UNIX is moving towards some unification, take for
example CDE, or a proc filesystem. The latter is real-
ly neat: indeed, with UNIX approach “everything is a
file” one could only wonder why a process should be
any different (and why it took so long to implement
and popularize this idea). However, the unification
isn’t complete. While it is possible to open /proc/1024
to get hold of a process with id 1024 (just to find out
who owns this process and when it was created, if for
nothing else), one cannot rm /proc/1024 to kill the
process, and one cannot do ls /proc/1024/open_files
to see the list of all open files for this process.
Though why not?
Since the list of processes conceptually is not much

different from the list of files, why don’t we have a
folder “processes” on a Mac, which has “files” stand-
ing for processes. So I could use the standard Finder
operations, View-by, GetInfo, Trash, Duplicate to
manipulate the processes. Usenet News hierarchy is
very similar to that of a filesystem (as a matter of fact,
this is how it is stored and managed on an NNTP
server). Nuntius newsreader presents the news hier-
archy as some directory tree, as folder’s and files in a
view-by-name mode. Alas, Nuntius had to emulate
much of the Finder’s functionality to manage these
newsgroups-folders. It would be much easier to
develop and use, say, printer and network managers,
an FTP utility or a newsreader, if one can tell the
Finder: here, this is a list of files, manage it as you
usually do with a list of files, just tell me when you’re
about to trash something.
Rearranging file icons within a folder view and rear-

ranging paragraphs within the document are essen-
tially the same activity. If it is unified, the overhead
and code duplication can be significantly cut down.
There is also a good side effect from that: a document
can contain folders and/or applications (icons of
other applications, etc.). So, we kind of get the hyper-
text for free.

The luster and dull of plain text
Configuration of a UNIX system is specified and

controlled by a huge tangle of plain text files,
/etc/hosts, sendmail.cf, syslog.conf, inetd.conf,
/etc/uucp/Systems to name just very few. .INI files on
some other systems are also plain ASCII. Even MacOS
caved in a little bit with System Folder:Hosts,
although it is a very isolated example on a Mac. Of
course, just because symbols displayed on screen
must be ASCII, it doesn’t mean that the information
on disk should be the same. Still, ASCII configuration
files abound, for a very simple reason: they can be
modified with any text editor from ex and edlin
upwards, and can be viewed and created even with-

A D ream of an Ultimate OS page 3 9

out an editor, with a cat command. Note, accessing a
block of /etc/hosts file is not much easier than read-
ing a /machines tree of Next’s netinfo database. ASCII
wins simply because tools for handling text files are
present even on a naked system. As long as a file sys-
tem is treated differently than a database, the makers
of netinfo, NIS or any other database have to support
tools for converting a database table or set of records
into a plain text file, and back.
But it does not have to be this way. If a database

manager is implemented as a core system service, and
the system always comes with a very primitive data-
base access tool, the gordian knot of system configu-
ration files disappears. The situation is almost ideal
on a Mac, where ResEdit is this universal database
editor. Much (if not all) system configuration can be
set up by opening a resource and toggling a few but-
tons or retyping strings or adjusting colors, without
any need to learn syntax of a specific configuration
file (and without any need for a system to waste time
trying to parse that text file and report an error if
any). Unfortunately, ResEdit and a set of templates
for system resources do not come bundled with
MacOS. But SimpleText always does. That’s why
System Folder:Hosts is a plain text, though it would
have been much better as a resource.
The very idea of an application as a merely collection

of code and configuration resources with a common
name is beautiful. It is even possible in some applica-
tions (LaserWriter Utility, for example) to add/delete
menu items and corresponding functionality just by
adding/removing appropriate resources, without any
need to recompile/relink the application. It was with
pain that I read a recommendation to refrain from
creating code resources with PowerPC native code
(which should be moved to the data fork instead).
Now an application has a database managed by the
resource manager, and a database managed by a frag-
ment manager.

Everything is Database
And this is not exaggeration: an operating system is

permeated with sets, lists, tables, and other collec-
tions of something. This something starts with funda-
mental data structures like a process control block or
a page table and continues to include i/o request
queues, list of open windows, resources. Also, SCCS,
RCS, termcap/printcap, networking databases (name
domain service, name resolver, /etc/hosts, /etc/net-
works, /etc/services, routing tables), whatis database
for man pages: one can hardly spend a millisecond
working in a computing system without hitting some
kind of database query. Note, every of these databases
supports basic select/insert/delete functions;
advanced options like concatenated keys and linking
among several tables are often required, too. Still,
almost each database has its own implementation of

these common functions. One can argue that manag-
ing process control blocks and virtual pages does
require tailored and very tuned in implementations.
However, even a couple of seconds delay in removing
a SCCS revision or a host entry is not a big deal at all.
Furthermore, many of system databases are imple-
mented as “flat file” with linear search, oftentimes
just because it was simpler. Using a well-designed
universal database instead of a multitude of quick
fixes actually promises a boost in performance
(besides, it is just cool).
Having a universal database frees the system or an

application from many chores, like time stamping or
permission checking, etc. But universality offers
another clear advantage: an ability to link all kinds of
records/tables, which is so much pain to do now. For
example, a link between two records representing
files is no different for a universal database manager
than a link between a record in the “Users” table, a
record in the “Processes” table, a couple of records in
the “Files” table and the “Print jobs” table. There is
no longer need for multiple IDs and messing with
them. Many-to-many links are also possible.
Moreover, this improves performance: list of all
processes belonging to user joe can be found faster by
a database query rather than with ps aux | grep joe.
Surely any database can do better than a dumb
search, like in netstat -a | grep finger (which is used
to finger fingerer). Many similar scripts are just data-
base queries, and not very efficient ones. Makefile
would be also easier to generate and maintain. It
would also be possible to link #include directly to the
includee (which would obsolete the intricate art of
specifying compiler’s -I and -L flags and trying to pre-
dict which of several possible time.h files the compil-
er would actually pick up).

File system is a database, and can be a
better database
Hierarchical organization of a file system is not the

only possible organization. Besides, the widespread
use of symbolic links and aliases makes a file system
look more like a network database, though kludged
(everyone who spent some time reanchoring aliases
can tell that). So why not to start with a networking
database with good indexing capabilities, something
of, say, Adabas? It was very efficient, implementing its
own storage management and transparent multi-level
indexing; its journaling capabilities are much better
than those of UFS (or HFS for that matter). Or take a
FileMaker: there are several applications on info-mac
for cataloging the contents of CDs and floppies in a
FileMaker database. So why a file system could not be
like this database from the outset?
Nesting folders is what gives the file system its hier-

archical flavor. Directories are just view of a certain

page 4 0 MacHack ‘95 Program Book & P a p e r s

subset of files, selected according to some criteria
(and named). Thus, a directory can be thought of as a
view of database records, a saved database query. It
follows immediately that a file can appear in as many
“directories” (views) as one wishes to. For example,
one can be a view of all files tagged as “sales reports”,
another may be a view of files modified within five
days. In a sense, “searching” a file system and creat-
ing and populating a folder becomes the same activi-
ty. Moreover, any file modification would be visible in
all views. Since saved views are database objects, one
can reference views within views if one so wishes.
There is no required hierarchy: you can have two
views be referenced from within each other, or create
any other network of views that best suits the prob-
lem.
Every database record (item) should have some

mandatory attributes like time stamps, owner, per-
missions, kind (document). Beyond that, the user (or
application/creator) can add anything he wants. For
some records, the body is just a binary object.
Records of kind “image” (or in table “images”) can
have additional attributes like the image width,
height and depth, a key of a compressor method, etc.
Thus, listing all images 512-pixel wide and with
depth at least 8 with a private colormap should be as
easy and elementary as viewing files in a folder by
date.
Viewing and editing files should not be a problem as

long as (even a naked) OS has some rudimentary
database browser. It may look like a basic no-frills
record browser in Paradox (displaying all record
fields in columns or as name=value pairs). Of course,
an OS should have an ability to generate better look-
ing views/reports (as Paradox does). Still, the basic
browser is necessary and useful (like cat or
SimpleText) in a desperate situation.
Having a general purpose database instead of the file

system does not mean that users should forget every-
thing they knew about how to grapple with a com-
puter. Almost all old acquired skills can be used with-
out any change. Indeed, a path to a file in a hierarchi-
cal file system is just a list of keys how to locate a file.
This becomes especially obvious if one looks at URL,
say, http:/somehost/foo/bar.html. This URL does not
actually imply that we want to access a file bar.html
in the directory foo under the DocumentRoot on the
host somehost. If foo is a script, then bar.html is just
a parameter passed to that script, and can be inter-
preted as a file name, or anything else the script wish-
es. In short, not everything between slashes in URL is
a name of a directory. It is just a key specifying an
object we want to take a look at. The same argument
holds for the new file system: one still can locate a
file by listing some of its attributes separated with
slashes. The advantage of the database approach is

that one could put a wildcard in any of the “directo-
ry” names, or one can consider such file attributes as
modification date, size etc. as some “directory names”
and use them in the “path”. In a sense, running find
and listing a “directory” would be exactly the same
activity.
Many industrial strength database managers (Oracle

for one) support transparent access to remote data-
bases, with possible local caching to improve perfor-
mance. It looks then that one doesn’t need NFS at all:
distributed database manager takes care of remote
mounting, authorization, etc.

Mock-up ‘hello world’ session
It is probably not going to look much different from

how we work on a Mac now. Once Mac is powered
up, we see a Desktop: a some particular view of the
database. It contains references to other database
objects like the table of processes, the table of system
data (which have attributes System and
UserConfigurable: Control Panels in short), the table
of recently used objects, etc. Suppose I located a C
compiler (well, I wish there were a better language
by then, say, Dylan), either on the Desktop, or in one
of the subviews, or just doing a plain search for any-
thing with attributes application and C. Once the “C
Project Manager” is launched, it prompts as usual to
open or create a project. I create a new project and a
new file, which is automatically tagged with the pro-
ject name, C, text, etc. attributes. In a sense, a
ThinkC project plays the same role as a directory
does now. Of course I can define and set other attrib-
utes I wish (some of them could be inferred from the
context or from the some other db object). This is
like entering data in a database table: one can say,
make a new record like a previous one, and then
change just a few values. I can also attach a comment
to a new C program, and make it as big as I wish.
Words from comments can be used in a file search,
too.
When writing a “hello world” code itself, I can say

“enter a db object”, get a query window and find an
object with attributes “data, C declaration, owned by
system, having something like ‘standard io’ in com-
ments”. Or I can say “C declaration for printf()”, and
hopefully the editor can fill in some default attributes
for the query. Of course I can go ahead writing a C
code and then click on printf() and tell the editor to
find and include some C .h file that declares this
function. If the editor inserts something like #include
<standard io> I can click on it and see what this pack-
age has.
It looks like one can have the functionality like that

even tomorrow: doing away with files as we know
them does not mean breaking everything, every habit,
every skill and every application. On the contrary,
most of the old functionality would apply, and some

A D ream of an Ultimate OS page 4 1

applications even become simpler (the C preproces-
sor does not need to go into trouble trying to figure
out where that .h file is).

page 4 2 MacHack ‘95 Program Book & P a p e r s

Introduction: Computers and the Law.
The legal system pervades modern American society.

One might almost say that it is the virtual infrastruc-
ture of the economy. Notwithstanding current calls
for litigation reform, the legal system itself will con-
tinue to be important because it provides the basic
assumptions for commercial transactions. As with
any industry, beyond general rules governing us all,
there are statutory enactments pertaining specifically
to that industry. Because software and computers are
inherently concerned with patents and copyright, that
statutory regime is uniquely federal2. Other impor-
tant areas of regulation arise as computers become
commonplace throughout society; regulation by way
of telecommunications policy is an example of that.
This paper discusses a wide range of issues which
have in common that computer software or hardware
is somehow involved.
The majority of the cases and statutes discussed are

federal because most of the legislating is taking place
on the national scene. In part, this results from the
predominance of issues involving intellectual proper-
ty and interstate commerce. It is probably also true
that the broad regulation of such technology is more
efficiently done on a national level. All three branch-
es of the federal government are involved in this
process. Congress of course legislates and the judi-
ciary decides disputes under existing law. The execu-
tive branch has a more complex role because it both
enforces existing laws and enacts regulations to carry
out policy; regulatory agencies often can wear more
than one hat.
It may be observed that developments in the law

always lag behind the most recent technologies, for-
ever playing catchup. This is inherent in the legal
process because busy engineers and software develop-
ers have a head start: usually, a need for regulation is
neither apparent nor discussed until after the new
technology comes on the scene. The legal develop-

ments discussed herein illustrate how, over the past
year or so, the legal community has been grappling
with issues raised by the computer industry. The
paper covers selected areas in which there has been
significant news since January, 1994. Some issues,
including current patent law developments and the
general law of privacy, are beyond the scope of this
paper. The cases were selected to help the reader
understand how the law may be evolving as the legal
process accommodates and adjusts to a major new
technology.

Recent Legal Developments.
Antitrust. Though vigorous competition is the

norm in the computer industry, not everything is per-
mitted; throughout our economy, monopolies are
frowned on and certain forms of unfair competition
are prohibited. Obvious examples are the outlawing
of collusive price fixing and bid rigging. More gener-
ally, marketing practices may be prohibited if they
unduly restrain competition. Competitors or cus-
tomers may bring civil suits for damages for unfair
competition; the Justice Department’s Antitrust
Division enforces federal trade regulation; and states
may enforce their own monopoly statutes.
Pride of place must go this year to Microsoft

Corporation, which has been involved in two major
antitrust cases. The first is the well-known action by
the Antitrust Division alleging a variety of unfair
trade practices3. While the original investigation had
been broad, the Justice Department ultimately
reached a settlement, widely seen as quite favorable
to Microsoft, which would not have required major
modifications to Microsoft’s marketing practices. The
proposed settlement had to be submitted for court
approval, the point when things got very interesting.
A group of competitors hired, anonymously, an attor-
ney to represent their interests; his brief opposing the
settlement detailed many complaints about Microsoft
practices. Judge Stanley Sporkin, a former head of

Legal Update: Selected Legal Developments
Of Interest to MacHack 95 Participants

Roger H. Leemis, Attorney1

Southfield, Michigan
Copyright, 1995

Over the last decade computers, and the software to run them, have become increasingly important to society. The
computer industry as a whole, both software and hardware, continues to grow in size and sophistication as an indus-
trial sector. Microprocessors and personal computers are found in ever more products, in most businesses and in many
homes. This relatively new technology now pervasively influences our economy and society in general. It is hardly
surprising that the computer industry is involved in legal matters before Congress or regulatory agencies, in private
litigation, and even in criminal prosecutions. Software developers and MacHack conference participants may find it
helpful to be aware of legal developments concerning computers or software. This paper discusses selected develop-
ments over the past year illustrating how the legal process is responding to this new technology.

Legal Update page 4 3

enforcement at the S.E.C., reacted strongly and
refused to approve the proposed settlement. (Among
other things, he wanted Microsoft to agree not to
make vaporware announcements to preempt the
competition.) This places the Justice Department and
Microsoft in the unusual position of jointly appealing
Judge Sporkin’s decision, both arguing that he abused
his discretion. Most commentators expect that the
settlement will stand4.
The other big antitrust concern for Microsoft was its

proposed merger with Intuit, which had been under
review by the Justice Department for months. When
the government announced it would not approve the
merger, Microsoft sued. One immediately notable
aspect was that Microsoft and the Justice Department
were allies in appealing Judge Sporkin’s decision
while simultaneously fighting over the Intuit acquisi-
tion. It is not only politics that makes for strange
bedfellows. In mid-May, Microsoft suddenly
announced that it was dropping both the litigation
and the proposed merger because it would have taken
too long to resolve. It remains to be seen whether
Microsoft will face future challenges; heightened
scrutiny seems a given. As Anne Bingaman, head of
the Antitrust Division, recently said: “We have
become a kind of Microsoft complaints center. And
we take them very seriously5.” Hardly comforting
words for Microsoft.
Intellectual property. Lawyers speak of “intellectual

property” law as encompassing patents, copyright,
trademarks and trade secrets. It is readily apparent
that the computer industry is deeply involved with
them all. The law has wrestled with some esoteric
distinctions, such as copyright for the mask used to
make an integrated circuit or potential patent protec-
tion for software or an algorithm, subjects beyond the
scope of this paper. Two cases in the copyright area
illustrate the continuing importance of intellectual
property and its impact on software development.
Perhaps the most-followed copyright infringement

clash has been the “GUI Wars,” Apple Computer, Inc
v Microsoft Corp, wherein Apple complained that
Microsoft and Hewlett-Packard had infringed on its
graphical user interface. This may be the classic
“look and feel” case and dates back to the Lisa
Desktop and Windows 1.0. After a series of prelimi-
nary decisions over four years (familiarly referred to
as Apple I - Apple V), the trial court ultimately con-
cluded that any copying was covered by an old
license from Apple to Microsoft going back to
Windows 1.0. Last fall, the U.S. Court of Appeals
affirmed6. Especially given the license, the Court of
Appeals found that only virtually identical copying
could have been an infringement; because the graphi-
cal interface was “partly artistic and partly function-
al7,” similar features or standard treatments (like a

trash can icon instead of a delete key) were to be
treated as ideas and were not protected by copyright8.
Press accounts focused on the other issue in the case,
that Microsoft and Hewlett-Packard were entitled to
recover their attorney’s fees from Apple. This case is
significant because the expression of similar ideas in
relatively standard ways from program to program
may not create copyright problems; however, soft-
ware developers still need to tread carefully in this
evolving area.
Another well-known, closely followed, and even

more technical copyright infringement action has
been the suit brought in Massachusetts wherein Lotus
Development Corp. had charged that competing
spreadsheet programs Quattro and Quattro Pro
infringed on its copyrighted program, Lotus 1-2-39.
The critical issues were not those of wholesale copy-
ing or “piracy,” but instead involved particular key-
strokes which related to executable operations. In
1993, after a nonjury trial, the federal district court
held that copyright protection could extend to a pro-
gram’s menu structure, its organization, and even the
first letters of command names10. The judge had
previously reviewed the Quattro programs and con-
cluded that the “look and feel” metaphor used in dis-
cussing similar graphical interfaces was not disposi-
tive of copyright protection11. The district court had
rejected arguments that the menu command hierar-
chy had been dictated by the functions involved, par-
ticularly the user macros12. Though offering insight
into how courts weigh such claims, the district court
determination of infringement is now of historical
interest only. The U.S. Court of Appeals recently
reversed, holding that the menu was not copy-
rightable, because the copyright laws provide that
copyright protection does not extend to, inter alia, a
“process, system, [or] method of operation . . .
regardless of the form in which it is described,
explained, illustrated, or embodied in such work13.”
The First Circuit reasoned:
We think that “method of operation” . . . refers to

the means by which a person operates something . . .
. Thus a text describing how to operate something
would not extend copyright protection to the method
of oper- ation itself; other people would be free to
employ that method and to describe it in their own
words.14

Both the First Circuit and the Ninth Circuit have
recognized that there are a few common ways in
which users interact with software and have limited
copyright law accordingly.
Commercial Law: The Computer Business. We

begin with an interesting, if not earthshaking, case.
The famous astronomer Carl Sagan did not have a
good year. His problems began when Apple
Computer assigned the code name of “Sagan” to one

page 4 4 MacHack ‘95 Program Book & P a p e r s

of its products in development; though for internal
use, these names are of course widely known. Apple’s
practice has been to honor those named. Sagan
apparently did not feel especially honored and had
his lawyers write a suitably lawyerly “cease and
desist” letter. Apple did so, redesignating the product
“BHA.” While that sounds like a food additive, Dr.
Sagan heard through the grapevine that this stood for
“butt-head astronomer” and that they didn’t mean
Beavis’ friend15. Sagan sued; it’s the American way.
His claim was that he had been defamed by the name
(even though not literally true). Last December, his
suit was dismissed. To make matters worse, he
recently learned that he was suffering from a poten-
tially fatal anemia; he is now recovering from a bone
marrow transplant. The anemia is believed to be
unrelated to the lawsuit. Apple’s latest new product
designation, Copland, for its pending System 8 oper-
ating system, honors the American composer Aaron
Copland, who died in 1990.
One important obstacle to greater use of electronic

data interchange is the lack of adequate “assurances,”
in the broadest sense, to support regular commercial
transactions. Downloading information from an on-
line database is one thing; entering into a binding
agreement or engaging in financial transactions is
something else again. Privacy issues and the develop-
ment of cryptographic standards are but part of the
puzzle; standards for verification, confirmation, sub-
sequent documentation and auditing are other need-
ed elements. A United Nations working group has
completed a draft model law on electronic data inter-
change in international trade16. The proposed model
law will address admissibility of EDI messages and
computer “signatures,” among other things. The
working group is reportedly also considering finan-
cial questions, including electronic promissory notes
or bills of lading. This could bring greater legal cer-
tainty to home shopping via cable.
Bankruptcy Law. Given the continued growth in the

industry, it may seem premature to discuss any aspect
of bankruptcy law. Nonetheless, success is not guar-
anteed to all competitors in any industry - - just ask
Wang Laboratories. Whether from an eventual gener-
al economic downturn, increased competition or a
specific misjudgment, there will continue to be bank-
ruptcies within the industry. One of the more com-
plex aspects of bankruptcy practice involves a
debtor’s statutory right to terminate (called “rejec-
tion”) ongoing contracts after a bankruptcy filing17.
However, Congress has limited the debtor’s right to
reject in certain classes of cases, such as real estate
leases, because rejection would be too disruptive.
Imagine a software company which goes into bank-
ruptcy and then suddenly terminates its long-term
licensing agreements. Congress has provided special

protections for licensees of “a right to intellectual
property18.” While no reported recent cases involved
software, cases involving a french fry vending
machine and a secret formula for rum19 suggest the
statutory protections will be given a broad and flexi-
ble interpretation. Licensees of intellectual property
will, however, have to meet the requirements of the
Bankruptcy Code, which could be very significant in
the case of a pending dispute with the developer.
Employment and Bankruptcy. Many people work

as independent contractors in computer-related
fields, including as programmers, software developers
or sales representatives. The IRS position on inde-
pendent contractors generally is beyond the scope of
this paper. However, consider this question: What
happens if an independent contractor is unpaid? As a
general rule, all creditors have to wait (sometimes
forever) to get paid. There is a longstanding excep-
tion for salaries, so that employees don’t lose their
last couple of paychecks (limited to $4,000 within
the preceding 90 days). But technically, an indepen-
dent contractor is not an employee. In the Wang
Laboratories bankruptcy, the court treated indepen-
dent sales representatives as the equivalent of
employees20. The Bankruptcy Reform Act of 1994
amended the Bankruptcy Code to confirm that treat-
ment21. However, this only applies to individuals or
to corporations with a single employee and only if at
least 75% of earnings in the preceding year came
from the debtor. Most importantly, this only applies
to independent sales representatives; other indepen-
dent contractors are on their own in the event of
bankruptcy. Persons doing significant work on that
basis would be advised to review their agreements.
Employment Law. The implications of computer-

based communications in the workplace continue to
unfold, especially in the area of privacy on the job.
Most employees are not aware that they probably do
not have any privacy rights for e-mail or voicemail at
work. One recently filed suit illustrates the issue: a
McDonald’s franchise manager was terminated after
his supervisor listened to romantic voicemail mes-
sages from a fellow employee with whom he was hav-
ing an affair. The terminated manager and his wife
have sued, alleging privacy law violations22. From
time to time, similar incidents make the news. Never
forget that computer-based communications are
accessible to the system operator; at work, the
system operator is accessible to the boss.
Criminal Law. Criminalization of conduct is per-

haps society’s ultimate expression of disapproval (sur-
passed only by becoming the butt of the opening
monologue on a late night talk show). Several crimi-
nal statutes address computers or software, some-
times treating them as unique subject matter. Other
statutes merely assume computers are but one of sev-

Legal Update page 4 5

eral options open to the criminally inclined. For
instance, many federal statutes require that the crime
take place across state lines; legally, it matters little
how an object is physically transported, or whether a
communication occurs by mail, telegraph, telephone
or computer. Often, a computer is not even men-
tioned.
The most notorious case of the year, and the one

most fitting the public conception of a “computer
crime,” started with the break-in and stealing of files
belonging to Tsutomu Shimomura, a computer secu-
rity expert with the San Diego Supercomputer Center.
This was widely seen as an affront and a personal
challenge23. Rising to that challenge, a number of
computer security experts succeeded in tracking
down the alleged perpetrator, Kevin Mitnick, who
was arrested and charged in Raleigh, N.C.24 Perhaps
surprisingly25, Mitnick was charged only in regard to
fraudulent cell phone codes and programming
devices, not under the specific federal statute for
fraudulently or otherwise improperly accessing a
computer or, through interstate use of a computer,
damaging a computer system26.
One of the year’s criminal cases of some national

notoriety, the “Jake Baker” prosecution27, arose in
nearby Ann Arbor. Jake Baker is the college student
who had posted a violent sexual fantasy, using the
name of a fellow student. An alumnus contacted the
University of Michigan after reading the posting. The
original criminal complaint charged the interstate or
foreign transmission of a “threat” to injure another28.
Public attention focused on the fact that, as graphic
as the story was, it did not express an intention to act
in the future; it clearly was a fictitious account of a
nonexistent crime. That, and the University’s suspen-
sion of Baker, caused most press reports to focus on
the First Amendment issues. Since then, the U.S.
Attorney has obtained a superseding grand jury
indictment, which drops the story and substitutes
instead a series of e-mail messages with someone
using the name “Arthur Gonda,” believed to be locat-
ed in Ontario, but about whom nothing else is
known. These conversations concern mutual desires
or fantasies suggesting a serial killer wannabe. Baker
is charged with five counts of transmitting threaten-
ing communications regarding a threat to injure
another person29, though there is no clear identifica-
tion of a victim. As is often the case, the computer is
treated as incidental to the offense even though news
accounts prominently feature this as a case about
computers and the Internet. According to both pros-
ecution and defense, this is the first time the federal
threat statute has been applied to the Internet30. The
prosecution has quite candidly stated that Baker is
being prosecuted to deter others. At the end of May,
U.S. District Judge Avern Cohn was considering a

defense motion to dismiss.
Yet another computer case, this time out of nearby

Farmington Hills, involves “stalking” by computer.
As have many states, Michigan recently enacted crim-
inal laws proscribing stalking, meaning “willful . . .
conduct involving repeated or continuing harassment
of another . . . 31.” Both stalking and aggravated
stalking require “unconsented contact,” which in
Michigan specifically includes: “[s]ending mail or
electronic communications to that individual32.” The
specific inclusion of “electronic communications” has
attracted public notice because most stalking statutes
do not cover computers. In the Farmington Hills
case, a disappointed suitor was charged when he kept
sending e-mail after a brief relationship ended33.
State District Judge Frederick L. Harris denied the
defense request to dismiss on grounds of vagueness
and because the statute was overbroad; however, he
did limit the prosecution’s proofs. Both sides are
seeking leave to appeal34.
A matter of much public debate is the issue of chil-

dren having access to pornography or potentially
being contacted by adults with bad intentions. This
is the subject of Sen. Exon’s proposed bill, also dis-
cussed herein. The particular subject of “child
pornography” (generally, explicit depictions of
those under 18) was dealt with in the Protection of
Children Against Sexual Exploitation Act35. The law
is worth mentioning for two reasons: First, it was
recently amended to specifically cover distribution of
visual depictions of minors by computer. Second, the
statute was recently upheld against a constitutional
challenge (in a case not involving a computer). In
United States v X-Citement Video, Inc, the Supreme
Court concluded that the requirement for “knowing-
ly” transporting such material covered both the sexu-
ally explicit nature of the depiction and the age of
those depicted36. However, this is still a very broad
law, especially since the depiction of the minor need
only be sexually explicit; it need not be obscene.
As this paper was going to press, news broke of a

prosecution in Los Angeles for possession of child
pornography obtained over the Internet. The City
Attorney expressed his concern that computer distri-
bution of child pornography “may become the pre-
ferred method of distribution37.” The man came to
the attention of the city’s “sexually exploited child
unit,” which corresponded with him and obtained
incriminating pictures. At that, the defendant may be
fortunate because he is only charged on a city misde-
meanor complaint, with a maximum of only 1 year
and $1,000. The corresponding federal charge, dis-
cussed above, is a serious felony. City Attorney James
K. Hahn seemed aware of at least some of the issues
raised by on-line communications when he was quot-
ed making the following distinction: “Certainly if you

page 4 6 MacHack ‘95 Program Book & P a p e r s

see something flicker across your computer monitor,
then you are not in possession. But I think if you go
to the difficulty of downloading then it’s yours38.”
Telecommunications and the “information super-

highway”. Last year’s hot debate in the telecommuni-
cations area involved privacy, especially enhanced
wiretap capabilities and the Administration’s notori-
ous “clipper chip” encryption proposal. It appears
that the clipper chip is dead, at least for now. The
proposal to require a hardware standard for encryp-
tion was widely attacked on a number of fronts,
including impracticality and lack of flexibility as well
as privacy. (The government would have retained a
key, enabling it to read private communications.)
Federal agencies are still working on the clipper chip
for their in-house use, however.
On the other hand, the Communications Assistance

for Law Enforcement Act39 did pass in the closing
days of the last Congress. This law will require
“telecommunications carriers” to assure that their
systems are wire-tap friendly, that is, “capable of —
(1) expeditiously isolating and enabling the govern-
ment, pursuant to a court order or other lawful
authorization, to intercept, to the exclusion of any
other communications” all signals of the carri-
er40. While there are also supposed to be privacy
protections, the plain intent of the act is to require
the phone company to guarantee that the calls it car-
ries can be tapped, at least by the government. As
FBI Director Louis Freeh has explained, “We just
want to make sure we have a trap door and key under
some judge’s authority41”
Congress is considering a sweeping telecommunica-

tions bill this year which is expected to be the subject
of considerable debate this summer. Senator Jim
Exon (D. Neb.) has proposed the “Communications
Decency Act,” which is intended to protect children
from pornography or pedophiles on the Internet.
These proposed amendments are intended to crimi-
nalize use of any “telecommunications device” to
make any “obscene, lewd, lascivious, filthy, or inde-
cent” communication; make harassing calls; or to
make “any indecent communication for commercial
purposes” to a minor. This is a sweeping proposal
indeed; perhaps its best feature is a provision that a
BBS operator who is not responsible for content has
some protection from liability.
The potential liability of bulletin board operators

and similar service providers is a significant problem
that is only beginning to be addressed. Some on-line
services do monitor content; does doing so make
them more or less liable? Under the Exon bill, that
might constitute “editorial control over the commu-
nication” and may increase liability. Do they warrant
to subscribers that children using their service will be
protected from obscenity or harassment? And what

of their liability if either infringing (that’s how
lawyers say “pirated”) software or defamatory com-
ments are disseminated using the bulletin board?
These questions are just beginning to be raised; more
detailed treatment is beyond the scope of this paper.
In one very recent case, Prodigy faces potential liabili-
ty in a multi-million dollar libel suit because its con-
tent guidelines and “board leaders” gave it a sufficient
degree of editorial control42. The plaintiff corpora-
tion contends it was defamed by a posting under a
false name.
Cross a photocopier and a telephone and you have

the fax machine; add a computer and you have the
ability to send multiple facsimile copies at the press
of a button. It did not take long for some unknown
pioneer to invent the so-called “junk fax,” unsolicited
facsimile advertisements, broadcast to lists of fax
machines. Congress reacted to junk fax complaints
by passing the Telephone Consumer Protection Act of
199143. The statute prohibited the unsolicited distri-
bution by facsimile of commercial advertisements.
Advertisers who were shut off from this means of
advertising promptly sued to enjoin the FCC from
enforcing the act. This past February, the Court of
Appeals held that the statute was constitutional, even
though it did not prohibit all unsolicited faxes44.

Concluding thoughts: the year ahead.
It seems incumbent on any author of a “year in

review” article to venture an opinion as to the areas
in which there are likely to be significant develop-
ments in the year ahead. Predicting what others may
do is fraught with peril, especially when speaking of
institutions such as the federal government. Still, two
areas stand out as worthy of special attention in com-
ing months; each is likely to be a significant influence
on the shape of the industry in years to come.
The first area to watch is the Microsoft antitrust situ-

ation generally. Even if the settlement proposal
rejected by Judge Sporkin holds up on appeal,
Microsoft may well face further challenges to its mar-
keting practices. The now-abandoned acquisition of
Intuit clearly indicated a corporate intention to
become a significant player in financial software, to
the point that bankers were made quite anxious about
the proposed merger45. The increasing extent to
which Microsoft combines various software programs
may also become an issue. This is an area of some
considerable uncertainty. As one insightful commen-
tator explained, “I thought it was pretty amazing that
Microsoft announced plans to bundle into the next
release of Windows (Windows 95) the software for
Microsoft Network46” The legal concern is that
if Microsoft sells different software programs in one
big “bundle,” businesses that compete with part of
Microsoft’s product line will be shut out; some critics
have long claimed that Microsoft, as a operating sys-

Legal Update page 4 7

tem developer, has had an unfair advantage in appli-
cations software. Microsoft is more than just a domi-
nate player in the industry; any antitrust develop-
ments affecting Microsoft will have a substantial
impact beyond the MS/DOS world. The marketing
practices of all software companies, and even the
shape of the computer software industry, could well
be affected because antitrust policy can fundamental-
ly shape the way an entire industry does business47.
Restrictions on software development practices could
become an important part of doing business. More
generally, litigation will likely play an increasing role
in the growth and rationalization of the computer
industries. Enough to borrow a phrase from
Clausewitz48 and say that in today’s economy:
Litigation is the continuation of marketing by other
means.
The second area of significant future development is

that of telecommunications regulation. Presently
pending legislation to substantially revise federal
telecommunications policy virtually assures signifi-
cant change. More generally, public fascination with,
and concern about, the Internet will likely translate
into continued attention from policymakers. One
issue likely to receive continued attention is that of
privacy, ranging from children’s access over parental
objections to sexually-oriented material, to public
cryptography and wiretapping, to workplace privacy.
The Internet is already becoming a metaphor for the

continued extension of computers into the lives of
more and more people. Telecommunications policy
is a logical, and likely, place to regulate computer-
based activities. Indeed, this may become the princi-
pal basis for future regulation of computer usage.
That would be ironic, considering that the computer
industry itself has grown despite, so far, the rejection
of various proposals for direct government control.
This is not entirely without precedent: the first sub-
stantial regulations of automobiles were motor vehi-
cle codes and parking meters.

Endnotes
1. The author wishes to acknowledge Bernard L.

Meyer and G. Burgess Allison, who have con-
tributed to the author’s understanding of comput-
er technology.

2. U.S. CONST. art I, sec 8, cl 8, authorizes
Congress to secure “to Authors and Inventors the
exclusive Right to their respective Writings and
Discoveries.” Similarly, the “commerce clause,”
art I, sec 8, cl 3, authorizes the regulation of
interstate commerce. Note to readers: Citation
form generally follows the Michigan Uniform
System of Citation rather than the format cus-
tomary with law reviews.

3. United States v Microsoft Corp, Civ No 94-1564
(DDC 1994).

4. MacLachlan, “Microsoft Stalled by Tunney Act,”
National Law Journal, February 6, 1995, p A6 col
2. (The Tunney Act requires public comment
and judicial review of the proposed settlement,
but limits judicial modifications of those
settlements.)

5. “Micromanaging Microsoft,” Detroit News, May
24, 1995, p 10A, col 1.

6. 35 F3d 1435 (9th Cir 1994)
7. Id, 35 F3d at 1444.
8. In general, an idea alone cannot be copyrighted

or patented because only the expression of the
idea is protected.

9. Lotus Development Corp v Borland Int’l, Inc. Civ
No 90-11662-K (D Mass).

10. Lotus Development Corp v Borland Int’l, Inc. 831
F Supp 223 (Keeton, J, D Mass 1993).

11. Id, 799 F Supp 203, 220 (D Mass 1992).
12. Id, 799 F Supp at 212-214. The opinion compares

the programs even at the level of individual key-
strokes.

13. 17 USC 102(b).
14. Lotus Development Corp v Borland Int’l, Inc. Dkt

93-2214 (1st Cir March 9, 1995)(emphasis
added).

15. Wall Street Journal, April 11, 1994, p A1 col 4.
16. “International commerce law draft complete,”

Automatic I.D. News, Vol 11, no 4 at 54 (April,
1995).

17. Generally, 11 USC 365.
18. 11 USC 365(n).
19. In re Prize Frize, Inc, 150 BR 456 (9th Cir BAP

1993) and In re Ron Matusalem & Matusalem of
Florida, Inc, 158 BR 514 (Bkcy SD Fla 1993),
respectively.

20. In re Wang Laboratories, Inc, 164 BR 404 (Bkcy
Mass 1994).

21. The new language is codified at 11 USC
507(a)(3)(B).

22. Huffcut v McDonald’s Corp, reported in National
Law Journal, February 13, 1995, B1, col 2.

23. “Taking a Computer Crime to Heart,” New York
Times, January 28, 1995, p 17 col 3.

24. United States v Mitnick, Crim No 5:95-Cr-37-01-
BO (ED NC March 9, 1995).

25. Then again, perhaps not. In the hours before his
arrest, Mitnick apparently made a number of cel-
lular calls, which were monitored. The charges
actually brought are certainly easier to explain,
and prove, than the original Shimomura break-in.
Mitnick was charged under three different sub-
sections of 18 USC 1029, including one count of
possessing “device-making equipment,” a com-

page 4 8 MacHack ‘95 Program Book & P a p e r s

puter capable of reprogramming a cellular phone
[section 1029 (a)(4)]; one count of possessing fif-
teen or more “unauthorized access devices,” e.g.
cellular access codes [section 1029(a)(3)]; and
twenty-one counts of placing unauthorized, cel-
lular calls [section 1029(a)(1)].

26. 18 USCA 1030 (West Supp 1995).
27. United States v Baker, CR 95-80106 (ED Mich);

filed sub nom, United States v Alkhabaz. Jake
Baker is the name he was known by at the
University of Michigan; it was not just a nom de
byte. The unknown “Arthur Gonda” was also
indicted.

28. 18 USC 875(c).
29. 18 USC 875 (c).
30. “Attorney: Student’s fantasies harmless,” Oakland

Press, April 28, 1995, p A8.
31. 1992 PA 260, eff January 1, 1993, MCLA

750.411h. Stalking is a one year misdemeanor.
On the other hand, “aggravated stalking,” is a five
year felony; it has the additional element of:
either violation of probation or a restaining order
(as, during a divorce); or making threats; or prior
stalking conviction. 1992 PA 261, eff January 1,
1993, MCLA 750.411i.

32. MCLA 750.411h(1)(e)(vi); MCLA
750.411i(f)(vi) (emphasis added.)

33. People v Archambeau, 47th District Case No 94-
4-4039 (Farmington Hills, Michigan).

34. People v Archambeau, Oakland Circuit Case No
95-DA-6342 AR (Pontiac, Michigan); personal
communication with Thomas W. Cranmer, coun-
sel for defendant.

35. 18 USC 2252 et seq.
36. __ US __, 115 S. Ct 464, 130 L Ed2d 372, 63

USLW 4019, 4023 (November 29, 1994).
37. “Man Held in Child Pornography by Computer,”

New York Times, Friday, May 19, 1995, p A8,
col 1.

38. Id (emphasis added). But consider the “knowing”
state of mind required under the federal statute,
recently upheld by the U.S. Supreme Court,
which may not require downloading. That flicker
could turn out to be the defendant’s future flash-
ing before his eyes.

39. Pub L 103-414, 108 Stat 4279, October 25, 1994.
40. Id, section 103(a).
41. Testimony, Senate Appropriations Committee,

May 11, 1995.
42. Stratton Oakmont Inc v Prodigy Services Co,

Case No 31063/94 (Supreme Court, Mineola New
York), reported in Wall Street Journal, May 26,
1995, p B2 col 4. (In New York, the Supreme
Court is the general trial court; the ruling was on
a preliminary motion.)

43. Codified in part at 47 USC 227(b).
44. Destination Ventures, Ltd v Federal

Communications Comm’n, 46 F3d 54 (9th Cir
1995). The court accepted evidence of the bur-
dens of such faxes when the statute was enacted
and refused to speculate on future technological
developments.

45. Paré, “Why the Banks Lined Up Against Gates,”
Fortune, May 29, 1995, at 18.

46. Allison, “Technology Update,” Law Practice
Management, May/June 1995, pp 12, 16.

47. The breakup of the Bell System is proof of that.
For another example, consider the great divide
between moviemakers and theaters; a long-ago
antitrust decree prevented the major studios from
owning theater chains.

48. The aphorism is commonly referred to as, war
being the continuation of politics “by other
means.”

A Macintosh based real-time, multi-tasking data acquisition system page 4 9

Introduction
Modern scientific instrumentation can rapidly pro-

duce large amounts of data that must be saved and
processed. This is not only true for imaging tech-
niques like magnetic resonance imaging (MRI) but
also for two dimensional methods such as liquid
chromatography/mass spectroscopy (LC-MS) where
repeated spectral scans are acquired over time.
It is a relatively easy task to write a program to ser-

vice an instrument if it only runs in the foreground
and allows only minimal user interaction during data
acquisition. It would be better to write a program
that is capable of running in the background without
any degradation of performance. This would allow
the user to perform other tasks during data acquisi-
tion. This means that the program must be able to
service the instrument in a real-time fashion despite
what other running programs or the user may be
doing.
The Macintosh environment offers major challenges

to writing data acquisition software. It is user inter-
face oriented, not multi-tasking in the true sense, and
not real-time. This means that foreground tasks and
user interaction receive priority over background
tasks. However, it includes support for multi-media
applications which can be used to implement a real-
time, multi-tasking application. In this paper we will
show how various features of the Macintosh ToolBox
can be used to create a real-time, multi-tasking data
acquisition application. Such a system is used to con-
trol the API-300 mass spectrometer produced by PE-
SCIEX.
It is important for future compatibility and support

that only stable features of the operating system be
used and that patches be avoided. This way the
source code should be compatible with future ver-
sions of hardware and the operating system.

Functional requirements
At PE-SCIEX we have specified a multiple module

data acquisition system using a client-server model.
The basic system (see Figure 1) consists of a back-
ground task that communicates with the instrument,
a foreground task for controlling the instrument, and
another foreground task for data display and process-
ing.
The background instrument communications task

acts as an instrument server while the instrument
control task is the client. This shields the control
task from hardware dependencies. Other tasks,
including third party software, can also be running.
This allows for maximum flexibility since we can tai-
lor modules for specific functionality and substitute
modules to meet changing requirements.

Figure 1. API-300 Software Architecture.
The background task handles all instrument com-

munications and writing of data to disk. It must be
able to perform these functions regardless of what
other tasks may be doing and do so in real-time. It
must also communicate with the instrument control
task in a manner that doesn’t interfere with its prima-

Instrument
Control Task

Instrument
Communications

Task

Data Processing
Task

Data
File

Instrument

GPIB

TCP

A Macintosh based real-time,
multi-tasking data acquisition system.

Susan E. Grocott* and Gregory B. King**

*Prior Data Sciences, Suite 120, 1550 Enterprise Rd., Mississauga, Ont., Canada L4W 4P4.
**SCIEX, a division of MDS Health Group Ltd., 71 Four Valley Dr., Concord, Ont., Canada L4K 4V8.
This paper describes the design of the software system used by the PE-SCIEX API-300 mass spectrometer for acquiring
data in a real-time, multi-tasking fashion using Macintosh computers. The system services the instrument in real-time
and saves the data to disk without relying on cooperation from other executing applications. The system consists of
separate, independent components for instrument control, instrument communications, and data processing running
concurrently and in communication with each other. This paper concentrates on the design of the instrument commu-
nications component where the real-time, multi-tasking functionality is implemented.

page 5 0 MacHack ‘95 Program Book & P a p e r s

ry function, but still be responsive enough to handle
user requests from the control task in real-time.
The communications task must write data to disk as

it is being received from the instrument instead of
keeping it in RAM until the end of the run. This is
necessary because the total amount of data may easily
exceed the amount of available RAM. This also
makes the data immediately available to the process-
ing task and minimizes the possibility of data loss
due to catastrophic failure.
The instrument control task supplies the user inter-

face for the instru-ment. It takes user input and
builds commands for the instrument which are then
sent via the instrument communications task. It
communicates with the instrument communications
task via TCP/IP. Several different control tasks have
been written, each with a UI tailored to a specific
application.
The data display and processing task does not have

to communicate directly with the other tasks. It fea-
tures the capability of reading data files that are still
in the process of being acquired. This gives the user
the ability to process the data as it is being acquired.
It must conform with good Macintosh programming
practices and periodically yield execution to other
tasks during lengthy tasks. Since there are no special
requirements for this task to support data acquisition
it will not be discussed in this paper.

System configuration
The hardware consists of an Apple Power Macintosh

8100/80 computer with 24MB of RAM and a hard
drive. The actual amount of RAM required is not
fixed, but must sufficient to hold all executing tasks.
Virtual memory can severely impact system perfor-
mance and is not used. The actual interface to the
PE-SCIEX API-300 mass spectrometer is either a
National Instruments SCSI-GPIB-A SCSI to GPIB
interface or an NB-GPIB/TNT NuBus GPIB interface
card.
The operating system is Apple’s System 7.5 with

Apple’s MacTCP 2.06 (TCP/IP driver) and National
Instruments’ NI-488 INIT 5.0 (GPIB driver) installed.
The TCP and GPIB drivers must be correctly config-
ured for the installed hardware. Other system exten-
sions are optional.
The API-300 is a high performance triple quadrupole

based tandem mass spectrometer designed to be
interfaced to LC systems. It can scan the mass range
from 10 amu to 3000 amu with a minimum step size
of 0.05 amu and can be operated in both MS and
MS/MS modes. Data can be generated at a rate of sev-
eral megabytes/min on a continuously sustained basis
at the maximum scanning speed of the API-300.
The PE-SCIEX API-300 itself contains two proces-

sors, a Motorola 68332 and a Motorola 68340, run-

ning a real-time operating system (Byte-BOS 683XX).
The instrument is controlled by a custom post-fix
instrument control language interpreter running on
the 68332. The 68332 controls the instrument while
the 68340 handles communications through a GPIB
(IEEE-488) interface.

Design
The instrument control task is a standard Macintosh

application that gathers user input and formats com-
mand sequences for the instrument and the commu-
nications task. Figure 2 shows the experiment editor
window from the Tune application. This application
is used for real-time adjustment and optimization of
instrument parameters. Tune creates a scanning
method from information that the user enters into
this window and sends it to the instrument when a
run is started.

Figure 2. Experiment editor window from the
Tune application.

The control task first attempts to open a TCP con-
nection to the communications task and then
requests a connection to the instrument before
attempting to send any commands to the actual
instrument. The communications task only allows
one active connection to the instrument at any given
time and will deny subsequent attempts to connect.
When the control task is finished it must relinquish
the connection so that other control tasks can con-
nect.
The instrument communications task is implement-

ed as a normal Macintosh application called MacDAD
(Macintosh Data Aquisition Daemon.) It has to man-
age bi-directional communications with both the
instrument control task and the instrument itself as
well as writing data to disk and handling Macintosh
events. This is accomplished through a multi-thread-
ed design (see Figure 3), the use of circular buffers,
and a custom disk caching scheme.

A Macintosh based real-time, multi-tasking data acquisition system page 5 1

Figure 3. MacDAD execution threads.
All communications to and from the instrument are

through message packets. Each message packet
includes a header describing the type and amount of
information contained in the payload, routing and re-
assembly information, a variable sized payload, and a
checksum. The payload itself can be either com-
mands or data. Routing information is necessary
because commands can originate from either the
instrument control task or directly from MacDAD
itself. The instrument uses the source code of a com-
mand packet as the destination code of the reply that
is generated.

Figure 4. Instrument message packet structure.
Incoming packets are enqueued in a circular buffer

before being dequeued and sent to their destination.
Separate buffers are used for each direction (see
Figure 5) and separate threads handle enqueuing and
dequeuing. This allows the reading and writing
processes to be decoupled. Packet processing can be
done either before enqueuing or after dequeuing.
Semaphores are used to control access to shared
resources such as the circular buffers or communica-
tions interfaces by separate threads.

Figure 5. MacDAD data flow.
Multi-threaded design is the key to implementing a

multi-tasking, real-time system. Macintosh execution
threads are either cooperative or pre-emptive.
Cooperative threads are only executed when other
threads yield execution to them, they cannot pre-
empt other threads. Pre-emptive threads will inter-
rupt other threads when they need to execute and do
not rely on cooperation from other threads. Pre-emp-
tive threads can be implemented using interrupt ser-
vice routines, vertical blanking tasks, the Time
Manager, or the Thread Manager (except on
PowerPC’s). However, pre-emptive threads are
restricted as to what they can do and have limited
access to the ToolBox [Reference 1].
Time critical tasks are performed using pre-emptive

threads which do not depend on other threads yield-
ing time. Tasks which are not time critical are han-
dled from the main event loop which is executed
cooperatively. Other tasks of intermediate priority
are handled using asynchronous service requests.
The main execution thread spawns a GPIB service

thread and a MacTCP ASR task before it enters the
main event loop. The GPIB service thread will also
spawn asynchronous file write requests when data
has to be written to disk.
The GPIB service thread is pre-emptive because

incoming packets from the API-300 are time critical.
The instrument signals that it needs servicing by
asserting a GPIB control line. The current Macintosh
implementations of the GPIB interface (NuBus and
SCSI) are implemented via polling. Because polling
degrades the real-time performance of the system it is
done using the Time Manager so that polling inter-
vals can be tuned for best performance.
The MacTCP ASR is also pre-emptive, but because

circ.
buffer

Instrument Control Task

Instrument

circ.
buffer

Read GPIBWrite GPIB

Read TCP Write TCP

Src/Dst code

Packet type

Checksum

Data

Data size

Header

Payload

Main program

Initialize

Main event loop

Terminate

GPIB service
thread

MacTCP ASR

Async file I/O

page 5 2 MacHack ‘95 Program Book & P a p e r s

TCP events are not as critical, the event is stored and
processed in the main event loop. When reading
from a TCP stream, all available data is read and
enqueued for further processing.
The writing of packets to either the GPIB or TCP is

of low priority and is always done from the main
event loop using synchronous device calls. The main
event loop is responsible for handling Macintosh
events, handling TCP events, writing instrument
packets to TCP, writing TCP packets to the instru-
ment, handling requests from other (pre-emptive)
threads, and handling internal errors (see Figure 6).

Figure 6. MacDAD main event loop tasks.
The writing of data to files is done both synchro-

nously and asynchronous-ly. Operations done from
the main event loop are synchronous while those per-
formed from a pre-emptive thread are asynchronous.
When a pre-emptive thread has to perform a synchro-
nous file operation it posts a request to the main
event loop to perform it.

The GPIB Poll Task

The Time Manager poll task is responsible for
both servicing the API-300 and processing the
received data. Before the task actually runs it
checks the environment to ensure that it is safe for
it to execute. The task first checks global sema-
phores to see if shared resources used by the task
are available. Then it checks to make sure that it
isn’t interrupting an I/O operation and then if
there is sufficient stack space available. If any of
these conditions are not met the execution of the
task will be postponed.
The presence of I/O operations is checked by walk-

ing through the driver unit table and checking each
driver’s drvrActive flag and queue header. Stack
space is checked by calling the ToolBox StackSpace
trap [Reference 2]. The StackSpace call works
despite published warnings [Reference 3], an alterna-
tive would be to compare the contents of the stack
pointer register with the current stack base pointer.
The poll task checks the state of the GPIB SRQ line.

When SRQ is asserted, indicating that there is data to
be read, the task will serial poll all GPIB devices in
turn to determine which device has to be serviced.
Multiple devices are supported. The data read in
from the API-300 is processed immediately instead of
being queued for later processing. This violates the
guidelines for interrupt time tasks but is necessary in
order to satisfy the requirement that incoming data be
processed without cooperation from other tasks.
Because this processing can be lengthy, the polling
and processing is actually done from a deferred task
installed by the Time Manager task. This sacrifices a
small amount of real-time performance for greater
compatibility with the Macintosh OS.
When processing instrument data, the task deter-

mines which need to be written to disk and which
need to be sent back to the instrument control task.
Data is written to disk directly from the task using
asynchronous file I/O while data destined for the
instrument control task is enqueued for later trans-
mission, via TCP, from the main event loop.

Figure 7. GPIB polling logic.
The poll task is executed at one of two polling inter-

vals, a normal long interval for when the system is
idle and a short interval for when the system is busy.
The short interval is used when postponing a poll to
reduce latency and when data is being read from the
instrument in order to quickly flush the instrument
buffers. When all data has been read the system will
revert back to the normal polling interval. This
scheme is a compromise between real-time perfor-
mance and system loading.

Accessing the GPIB Interface
The driver supplied by National Instruments is only

used to initialize the GPIB interface and to write to it.
Polling and reading use custom code that directly
accesses the GPIB hardware. Directly accessing the

SRQ asserted?

schedule next poll

read data

process data

YES

NO is device
requesting
service?

YES

NO

is there no I/O pending
and is there enough stack?

YES

NO

Mac events

TCP events

Process GPIB pkts.

Process TCP pkts.

Handle internal requests

Handle internal errors

Check quitting

A Macintosh based real-time, multi-tasking data acquisition system page 5 3

hardware is done for performance reasons, using
chained asynchronous driver calls in the poll task
degrades real-time performance.
In order to poll and service the API-300 the poll task

must first determine the state of the SRQ line. If it is
asserted, the task must then serial poll the instrument
to see if it is requesting service, and if it is the task
must read the data from the instrument. These
actions are normally done using the ibline, ibrsp, and
idrd driver calls [Reference 4].
MacDAD replaces these driver calls with a set of

functionally equivalent custom routines that directly
access the GPIB hardware. These routines use the
same parameters as the driver calls they replace.

Disk Caching
The use of a custom disk caching mechanism is

important in tuning the performance of the system.
The size of data packets returned by the instrument
varies widely, as does the time interval between pack-
ets. The two limiting cases are small packets
returned very frequently and large packets at a low
frequency. The conditions will vary depending on the
type of analysis chosen by the user and the type of
sample being tested.
The normal disk caching mechanism where flushing

is triggered by the amount of cached data only works
well for the large packet case and even then the size
of the cache affects performance. In the case of small
packets being returned at a fairly high frequency,
cache flushing would occur infrequently and can
cause the Macintosh to fall behind in servicing the
instrument whenever it occurs. This is because the
time to flush the cache is greater than the time
between packets. The larger the size of the disk
cache, the worse this problem becomes because it
takes longer to flush the cache.
All file writing operations bypass the regular

Macintosh disk cache. Synchronous writes are imme-
diate while asynchronous writes use a custom disk
caching mechanism where the trip point for flushing
the cache is determined by both the amount of data
cached and the time since the last flush (see Figure
8). We also use a double buffering scheme where
new data is cached in a second buffer while the first is
being flushed to disk. This also eliminates the need
for multiple parameter blocks since there is never
more than one asynchronous operation pending and
data can be accumulated in the second buffer while it
is pending.

Figure 8. Disk write caching.
By flushing the cache based on elapsed time a small-

er amount of data is written when packets are small,
reducing the amount of time required to flush the
cache. Combining the two mechanisms allows both
large and small packet cases to be handled. In addi-
tion, control of the cache parameters is taken away
from the user.

Summary
We have presented an overview of the software sys-

tem used to control a PE-SCIEX API-300 mass spec-
trometer. It is both multi-tasking and real-time and
the system meets its data acquisition performance
goals. But because data acquisition has priority over
all other tasks, acquiring data at the maximum rate
can compromise the performance of other tasks.
Performance at lower data rates is adequate to simul-
taneously analyze data and print results while acquir-
ing.
The robustness of the system has been proven by

daily usage and overnight and weekend batch runs in
our test labs under a wide variety of conditions. In
addition, special stress testing using limiting cases are
also performed. Robustness is important because the
system is intended for continuous operation.
Separate instrument control and communications

tasks allows for the remote control of instruments.
Only the instrument communications task needs to
run on a computer that is directly connected to an
instrument, the control task can run on any other
networked computer.
Communications between the instrument control

and communications tasks could also be performed
using PPC instead of TCP. Using TCP has the advan-
tage of allowing the instrument control task to be a
non-Macintosh application. Because of the large
amounts of data that can be transferred, the use of
AppleEvents is not recommended.
In order to make the system compatible with virtual

memory all buffers used by the instrument communi-
cations task must permanently reside in physical
memory. This guarantees that they will always be

cache new data

past set points?

exit

swap buffers

issue write

YES

NO previous write
finished?

YES

NO

page 5 4 MacHack ‘95 Program Book & P a p e r s

accessible to interrupt time tasks. However, virtual
memory imposes a performance penalty on the over-
all system because other tasks will be swapping their
storage in and out of physical memory. Therefore the
use of virtual memory is not recommended.
Native PowerPC versions of some of the component

applications have been built. Since the drivers and
most of the ToolBox are still not native, only those
applications which do a lot of data processing would
benefit from converting to native code. In the case of
MacDAD, which does little processing, the emulated
version actually runs ~10% faster than the native.
This is most likely due to the overhead in switching
from native to emulation.

Acknowledgments

The authors wish to thank Ronnie Bishop and
Dan Repich at National Instruments for their help
in guiding us through the internal workings of
GPIB interface boards. Thanks also to the other
members of the API-300 team with whom we (and
MacDAD) had to interface with: Peter Buckley
(f i r m w a re), Peter C. Gzowski (Tune), and Enzo
Iantosca (firmware).

References
[1] “Inside Macintosh: Processes”, Apple

Computer, Addison-Wesley, Aug. 1992.
[2] “Asynchronous Routines on the Macintosh”,

Jim Luther, Develop Mar. 1993 (13), pp. 5-30.
[3] “More on Asynchronous Routines in Issue 13”,

Develop Sep. 1993 (14), pg. 5.
[4] “NI-488.2 Software Reference Manual for

Macintosh”, National Instruments, Oct. 1993.

Macintosh Task and Process Priority Management page 5 5

Introduction
The goal I have in mind in setting out to write this

paper, is to provide a direction for making use of
unused processing facilities—maximizing system pro-
ductivity in order to get more done quicker. I was
lead to the ideas in this paper by consideration of the
emerging field of agent software, and by awareness of
the potential processing power being wasted by idle
systems. As we give computers more independence,
this wasted processing can be put to use for the per-
formance of tasks that will not require human inter-
vention. Some of this is being done today with back-
ground virus and disk maintenance applications, but
I will point out in this paper that many more—if not
the majority—of the tasks performed on computers
can be designed to utilize available processing more
effectively.
Most users imagine that computers should help

them get as much done as quickly as possible.
Unfortunately, that isn’t always the case. A conse-
quence of this is a reduced willingness to perform
some tasks on computers. A complicated graphic fil-
ter which ‘ties up’ the computer for what are per-
ceived to be—and perception is a key issue—extend-
ed periods of time is reduced in value to the user
because of those constraints. By reducing the time it
takes for tasks to complete (at least the perceived
time) users will be more inclined to actually utilize
those tasks.
The vast majority of user’s don’t care at all about

code optimization and how fast a programs routines
can run. They care only for the performance of the

applications they use [5, p.676]. Performance is a
measure of how quickly a user can accomplish their
work, not how quickly a program can perform its
internal functions. A program can have completely
un-optimized code and still out-perform its competi-
tors providing it makes it easy for users to get where
they want to be.
With this distinction in mind, I’m going to ask for

the world. I want computer systems to give me the
perception of instantaneous response. I want most of
my work to be done for me—before I ask for it. I
want computer systems to utilize 100% of their pro-
cessing capabilities all of the time.
These are not unreasonable requests. In this paper,

I’ll explain why.

Definitions
I will begin with some definitions to clarify key

terms used throughout this paper.
Task: A set of work to be completed. May be divid-

ed into stages and/or sub-tasks.
Stage: A single, non-subdividable, portion of a task.
Process: A sequence of work.
Priority: How much preference is to be given to a

task/stage/process over others for use of available
processing—and potentially other—resources.

Weight: The relative priority given to a task or
process. Measured in an arbitrary scale depen-
dent on the system of priority management in
use.

Agent: An application or task that independently
performs tasks for users.

Macintosh Task And Process Priority Management
Grant Neufeld

The modes of organizing computing tasks are expanding and evolving due to the introduction of new technologies,
techniques, and paradigms such as parallel processing, independent/intelligent applications, and document-centered
processes. It is no longer acceptable to force the user to wait to regain control of the computer; the era of the watch
cursor is over. The user must have the perception of instant access to commands and the ability to interrupt processes.
Hence, to meet user expectations, and to accommodate multi-processing requirements, the design of task execution
must be restructured.
Instead of a simple model of defining task execution — as either currently in progress or scheduled for later execution
— applications will need to be, among other things, responsive to interruption at almost any point in their execution.
The increasing number of processes operating simultaneously on modern computer systems has also created a need for
prioritization — including the designation of tasks that might never execute — and fragmentation of tasks — division
into sub-processes or independent processes.
In this paper, I will explore design methods available for task prioritization, fragmentation and inter-process coopera-
tion. This exploration will emphasize the division of tasks into three major classes: ‘Immediate’ user interaction ori-
ented, ‘background’ the actual work of the process, and ‘optional’ tasks that can be skipped if there is not sufficient
processor time available. I will also examine these methodologies in the context of emerging technologies such as
OpenDoc and preemptive threading. Regarding implementation issues on the Macintosh, I will focus on high-level
events, threads, and the process related managers. I will also examine the use of cooperative and helper applications
for task distribution, including those working across networks of computers. Through this discussion, I will provide a
basis for application task design in the context of current and future Macintosh development.

page 5 6 MacHack ‘95 Program Book & P a p e r s

Quantum: time interval in which a process is
allowed to run. [8, p.64]

Task Modeling In The Software Design
Process
The software development process, as discussed

here, is divided into six primary stages as presented
by McConnell [5; Chapters 1 & 3]:

- Problem Definition
- Requirements Analysis
- Architecture
- Construction
- System Testing
- Future Improvements

The consideration of task priority and status should
begin immediately following the definition of the
problem and should continue through all the remain-
ing stages. Every stage of design except the problem
definition is affected by, and affects, process and task
design.
As an illustration for this discussion, I will define an

example problem as being “Users do not always spell
words correctly.”
At the requirements stage of application design, the

results needed to solve the defined problem should be
determined. In the example, the results needed are
correctly spelled words. All tasks performed by the
application should work toward achieving these
results.
At the architecture stage the actual tasks and sub-

tasks are defined and, depending on the scale of the
application, the stages of the tasks are determined. In
the example, I will define three major tasks (other
than initialization and cleanup) which make up the
components of the application loop:

check for misspelled word
confirm spelling with user
correct spelling

Sub-tasking the first of these, the following tasks are
determined:

retrieve word
compare with dictionary
identify result of comparison

At the construction stage, the actual code for the
functions which will perform the tasks must be writ-
ten. A pseudo-code function might look like:
put the next word into variable theWord
search dictionary for theWord
if theWord was found return correct
e l s e

load suggestions as thread process
ask user to confirm or correct theWord
if user confirmed return correct
e l s e

change theWord to user selection
return incorrect

end if

end if

Note that the load suggestions function is called as a
thread process. What is meant by this is that the sug-
gestions are loaded in while the user is being interact-
ed with. Some existing spell checkers use this method
to prompt the user with a misspelled word as soon as
it is found and to start loading in suggestions while
the user is looking at the word. This is a more effec-
tive method than making the user wait until all the
possible suggestions have been loaded or waiting for
the user to select a ‘suggest’ button. This type of
implementation is discussed further in the section on
anticipatory tasks.
As well as the normal testing of individual functions

to see that results match intent and no bugs are pre-
sent, it is crucial to test whether the defined tasks, of
which the functions form the stages, actually provide
the results they were designed to. This may seem
obvious, but in actual practice is not always followed
and is included here as a firm reminder.
Finally, the vast majority of applications are subject

to upgrades and improvements (unfortunately, in
practice, not necessarily at the same time). When
modifying an existing application, all the stages
described above should be followed. The new tasks,
or changes to existing tasks, should be identified and
the procedures applied at each stage should be adjust-
ed accordingly.

Considerations in Designing Tasks
A number of factors and options need to be dealt

with in the design and implementation of software
tasks.
Primary among these is which resources will be

needed and/or useful to the performance of the task.
This includes memory, storage, data files, other appli-
cations/processes and results from other tasks, among
other things.
Developers should be considering which tasks can

be initiated without all of their pre-requisites first
completing, as in UNIX pipe operations. Tasks should
be designed to start as soon as possible, even if some
of the pre-requisites needed to complete the task are
not yet available or done. An example of this is found
in UNIX pipe operations which allow the dependent
process (the receiver of the pipe output) to process
the piped information as it receives it, not requiring
the dependent to wait for the depended upon process
to complete. Under most circumstances, this will
allow the task to complete more quickly.
Processes need to be able to deal with required facili-

ties being down. If the process has other work it can
perform in the mean time, it should work on that
until the missing facility is available or it finishes all
it can do without the facility. The process can also
switch to an alternate (perhaps less useful or desir-

Macintosh Task and Process Priority Management page 5 7

able) facility to accommodate its needs if one is avail-
able.
If a process does have to block because of a missing

facility, it may be appropriate to notify the user or an
owner/scheduler process so that the decision of
whether to wait for the facility or cancel the process
may be made. Not all processes will require this inter-
action; optional processes may be summarily can-
celed. [1, p.72]
“Transparency of Processing” [8, p.385-387] is

important while at the same time, it is essential that
users maintain control and the perception of control
over the tasks on their systems. The user must at any
moment be able to change task priorities, add tasks
and cancel tasks. They must also be able to ‘see’ the
processes if they want to—but not have to if they
don’t.
Good choices for feedback are progress bars and

showing the results of a task up to its current stage
(as in Netscape’s display of html documents up to the
point it has downloaded). Simply identifying the
task’s state as busy (as in a watch or beach ball cur-
sor) does not tell the user anything of what work is
being performed.
The splitting of processing for portions of tasks—

whether to multi-processors, distributed processing,
or other task handling applications—should in most
cases be performed transparently to the user, requir-
ing no intervention.
Another consideration in task design is which tasks

can be run continuously, and also whether there may
be tasks that could be added which would engage in
continual processing. As an example, OpenDoc users
will want dynamic documents that update themselves
continuously (perhaps stock & news reports) with
certain portions having periodic updates (news head-
lines) and others requiring continual updates (stock
charts), possibly constrained to certain larger periods
of time.
What is important to note is that the document com-

ponents handling the news headlines and stock
charts should continue to process their tasks regard-
less of whether the user is currently viewing them.
They may be allocated fewer resources to do so, but
the continual updating will mean that the user will be
able to access the information with minimal delay.
It is also useful to consider who or what is initiating

a task. Some possible task initiators are:
User
System
Software
Agent
Distribution (as in distributed processing

networks)

Task Types

I will identify and attempt to define a number of dis-
tinct categories/classes of tasks. Individual tasks may
fit in to multiple categories. I expect that there
remain other valid categories which I have not con-
sidered here.

Anticipatory Tasks
One way to increase an application’s performance is

to perform part or all of a task’s work before the user
requests the task to be done. Amazingly enough, this
advance processing does not require processors with
built-in time-travel units. What is required is a model
of task design which determines the earliest point at
which a task can begin processing, regardless of the
state of the user’s input. I call this type of task defini-
tion ‘anticipatory’ tasks.
As an example, consider the task of spell checking

text. The earliest point at which a spelling check task
may begin is the point at which some text (any text)
may be found. Some applications apply this by check-
ing text as it is typed. I would suggest an even earlier
point at which text can be found—when there are
text documents available on local (or even net-
worked) storage devices. Utilizing idle processing
time, a spell checking task could scan drives for doc-
uments with misspelled words—compiling a list
which a user could then view when they choose to.
Various configuration options could be added to such
a task, such as particular types of documents to skip.
An important aspect of anticipatory tasks is their

level of feedback and intrusiveness to the user. Unless
the user explicitly requests feedback (such as beeping
when a word is misspelled) none should be provided
except under special error conditions. As more antici-
patory tasks are added to a system, the growth in
unrestrained feedback could aggravate users, disin-
clining them to use the tasks. By the same token,
insufficient feedback can also be seen as a problem
area by users who want to know what tasks are taking
place on their systems.
Almost any application that performs tasks that the

user has to wait for will benefit from anticipating
those tasks. In some cases this may require the appli-
cation to have some level of intelligence and learning
capability, and perhaps most applications would ben-
efit from these. However, there remain numerous
tasks which require no intelligence at all to antici-
pate.
For example, in the case of development environ-

ments, a number of tasks can be performed on a con-
tinuous basis: syntax checking, compiling, linking
and maintaining the errors/warnings list. All of these
can take place, while the programmer is entering
code, as optional tasks using spare processing time
(which is usually a lot when the only foreground task
is the entry of code by the programmer). By perform-

page 5 8 MacHack ‘95 Program Book & P a p e r s

ing these tasks continuously rather than waiting until
the last minute (when the user actually requests the
tasks to be done) there will be a significant increase
in effective speed. Compiling will take place over a
much longer period of time than with the ‘last
minute’ compiling, but the time it takes to finish
compiling once the programmer selects the compile
command should seem almost instantaneous.
With this I come to the notion that software should

operate in an evolutionary fashion; the user should be
able to say at any instant “I want the results of the
work you’ve done so far.” In fact, the results should
already be available for the user to work with—even
though the work hasn’t been completed the results
itself should always be maintained in a ‘completed up
to this point’ form while new changes and additions
take place. Users should not be made to wait until
every detail is complete before they can work with
the few or many details already completed.

Optional Tasks
There are tasks which, while they will improve the

results of a set of work, are not necessary for the user
to get what they want.
An example ‘optional’ task is an anticipatory task to

syntax check code while it is being edited. If there is
sufficient processing time available the task should be
performed because it will likely benefit the user.
However, if the user has a 3D rendering program pro-
ducing a graphic in the background while the user is
editing code, there will not likely be sufficient pro-
cessing time for the optional syntax check to take
place. The user can still request a syntax check at any
time, which will make the task a required one.
Any time-critical requirements for a process must

also be specified. If an optional task has time critical
requirements, and there isn’t processing available for
optional tasks, the task may be canceled because it
isn’t able to execute properly.

Timing Sensitive Tasks
Periodic tasks, such as mail downloading, may have

a ‘desired’ time frequency specified, as well as a
leniency factor to allow for—and restrict—delays
during ‘busy’ periods. A more difficult scheduling
trick would be to anticipate a busy period and sched-
ule time sensitive processes early (within their lenien-
cy limits) to avoid it.

Dependent/Depended-upon Tasks
Some tasks will be dependent on the completion of

other tasks before they can complete. There are two
definable states for dependent processes regarding
their dependence: having other work that can be
done, and being unable to proceed (blocked) until
the depended upon task(s) completes. An example is
a task to spell-check a file which depends on a task to

read the file.
In priority management, depended-upon task should

not be aware of the processes that depend upon it for
completion. The priority of the depended-upon
process may have its priority affected by the depen-
dent processes, but the system in use for prioritiza-
tion can determine this without any input from the
depended-upon task. It is, however, important for the
prioritization system to track all dependencies.
The level of dependency should weigh (in propor-

tion) upon the priority given the depended upon
process, with each additional dependent processing
adding weight as well. A scheduling system might
also factor the number of dependents a process has in
determining its priority.

Distributed Tasks
Individual users will not likely provide enough tasks

for their systems to utilize all available processing. I
would conservatively estimate that on the majority
personal computers such as the Macintosh, at least
90% of the processing power is left idle. Consider the
lack of productivity of systems during word process-
ing when the only activity is user keyboard entry and
the occasional formatting or save command. This
‘spare’ processing time can be utilized effectively for
distributed tasks.
An example of a distributed task which can be

spread out among many systems is the cracking of
RSA encrypted keys. One such project involved about
100 systems across the internet and was done over
the period of about 1 year.
Not all tasks benefit from distribution. Currently, the

majority of distributed tasks are large, calculation
intensive tasks such as graphics rendering which can
be easily broken into small distributable chunks. A
form of task that could benefit from distribution is
the emerging field of agents, especially net agents. [1]
Distributed tasks will normally be treated as optional

unless specifically designated as required. If a user’s
tasks begin to require more processing than will allow
for processing of other systems’ distributed tasks, the
processing that has been done should be returned to
the other systems and they should be notified that no
further processing is available for the moment.
With multi-user applications it may be necessary to

calculate priority determination based on priorities
set by a number of users on different machines.
Eventually there will be a need for a Distributed

Process Manager or a distributed process component
within the Process Manager.

User Tasks
User tasks must be given the highest priority next to

essential system tasks, except within extraordinary
circumstances, or when the user has explicitly

Macintosh Task and Process Priority Management page 5 9

allowed otherwise.
The two primary aspects of user tasks are interaction

and feedback. Tasks should respond with feedback
immediately to user input such as keyboard and
mouse events. If the feedback can not be the complet-
ed results for a task, it should at least be an acknowl-
edgment of the user’s request and indication of its sta-
tus.

Other Types of Tasks

System Tasks
Tasks performed to maintain and update the system.

Examples include updating the clock and refreshing
the video display.

Required Tasks
Quite simply, required tasks are those which must be

completed, whether initiated by the user, the system
or some other initiator.

Priorities
In order to properly schedule processing for the vari-

ous types of tasks, a system of task priorities must be
established.

Highest High Normal Low Lowest
user, system, depended- required dependent optional,

timing upon anticipatory,
sensitive distributed

Figure 1, Relative Priority of Tasks
User, system and timing sensitive tasks will take pri-

ority over all others.
Optional (including anticipatory and distributed)

tasks will be given the lowest priority.
Dependent tasks will have their priority lowered in

favor of depended-upon tasks which will have their
priority raised.
The actual priority weight of a task should be calcu-

lated based on it’s type, the weight of any dependent
tasks and the weight of any tasks that have been indi-
cated as being able to benefit from (but not depend-
ing on) the completion of the task. The latter deter-
minant is more difficult to establish, and will proba-
bly not be used in many systems.
In addition to these basic factors, there may also be

direct input from regarding the priority to be given a
task, as well as individual weightings attributed to
tasks by themselves and their ‘parent’ tasks or appli-
cation. The priority for an application should also be
a factor in the calculation of priority for its sub-
processes. Decisions about which processes to distrib-
ute in distributed systems will be affected by priori-
ties. It can get quite complicated without a clear
delineation of priority control.
It is with this point in mind that I advocate later in

this paper for the introduction of a comprehensive
priority manager for the Macintosh operating system.

I suggest that individual processes should only be
allowed limited say in determining their own priority.
A system of priorities can only be effective if it is
applied consistently throughout the whole system.
The priorities of tasks will also change based on

changing circumstances. The user can change the pri-
ority, processes may indicate dependence or cancel
their dependence, among other changing factors.
Other more complicated factors may be included in

task prioritization. The time a task will take to com-
plete a task can be considered; the shortest tasks
should generally be done first. [8, p.67] The ‘feasibili-
ty’ of a stage of a task being completed within some
time frame can also be used to affect its priority.
Prioritization must not prevent low-priority tasks

from executing at all (unless they are optional). It
should reduce proportionately the amount of process-
ing resources available, but not to the point of pre-
venting the task from reaching completion.
In another vein, faster, but lower-quality, methods

for tasks should in some cases be performed first,
with subsequent use of the higher quality method if
time is available. An example of this is Netscape’s
“lowsrc” attribute for the image tag (IMG) in html.
This allows a low-quality (and presumably signifi-
cantly smaller) version of a graphic to be supplied for
faster downloading; the user can then determine from
the low-quality version if they want to take the time
to get the high-quality image.
In more complicated systems, there may be negative

effects from the use of low-quality processes. Marvin
Minsky has given some arguments against this type of
‘instant gratification’ in (intelligent) learning systems
[1, p.26].
All of the prioritization factors which affect applica-

tion tasks apply equally to document tasks. OpenDoc
documents will have many components which
require processing at the same time, and some com-
ponents may require other components to complete
processing before they can do their work. (IE. spread
sheet equation dependent on value set in another
component.)
Some resources other than just processing may be

useful to allocate based on priorities. For example,
memory and storage limitations may mean that there
isn’t enough space for all processes to execute, so
some processes may be completely prevented from
being able to complete and others may have to wait
for sufficient resources to be freed. For example, a
process may take up a large amount of storage for
scratch files which will be freed when it completes.
Other processes may have to wait until it finishes to
have enough space to work in. It may also be useful
to consider doing processes requiring scratch space
before those requiring permanent space, because if
the latter is done first, the former may not have

page 6 0 MacHack ‘95 Program Book & P a p e r s

enough room to work in.
Always keep in mind that the first priority is to get

done what the user wants—that is the ultimate mea-
sure of a system’s performance.

A Priority Manager
Throughout my work on this paper, I have continu-

ally returned to the need for a system based priority
manager. Many of the prioritization controls I have
discussed should be introduced at the system level to
be effectively implemented.
The ‘mechanism’ for process/task scheduling should

be in the system. The ‘policy’ should be available to
the system and individual processes. [8, p.68-69]
The impending version of the Macintosh OS code-

named Copland will apparently support 32 levels of
prioritization for processes created in the protected,
pre-emptive area of memory.

“New applications written specifically for Copland
will be able to create protected processes that are
pre-emptively multitasked at any of 32 levels of pri-
ority. These independent tasks will access the I/O
subsystems directly but will not be able to use any
Toolbox or QuickDraw routines to create user
interfaces.” [11]

A Macintosh Priority Manager should be responsible
for, or provide a basis for, scheduling of processes and
threads with the Process and Thread Managers.
When a required process identifies an optional

process as being necessary for the completion of the
required process, the optional process should be
treated by the Priority Manager as required, and be
given a priority level based on the priority of the
required process. Because the effective priority calcu-
lated by the Priority Manager can differ from the spe-
cific priority given to the process, the optional
process need not be aware that it is being treated as a
required process.
A number of questions remain to be answered

regarding the implementation of a complete priority
manager.
How should permissions for processes to assign pri-

ority to other processed be determined? Protection
may be needed against malicious or ‘confused’
processes which may attempt to negatively affect the
execution of other processes by changing their priori-
ties, marking them as optional, or whatever. Some
sort of permissions scheme is needed to handle this.
[1, p.53]
How should new or custom priority classes be iden-

tified? The system Priority Manager could use a
method like AppleEvent descriptors to allow the
addition of non-standard priority properties.
Handlers for non-standard properties would have to
be supplied either by a system extension or by an
application using the property type. If no handler

exists, the property should be ignored. There may be
room for applications and extensions to expand or
modify existing property handlers. The precedence or
weight of individual properties in relation to each
other must also be evaluated.
In this way, it could also be possible to add fields to

priority records to identify total space required to
work, total space wanted to work, total space needed
to permanently allocate.

Some Necessary Priority Manager
Functions

- flag a process’s priority
- internal system calls from Process & Thread

Managers to determine process to process.
- allocate/deallocate priority record
- set process (PriorityRec, processIdentifier); if

processIdentifier is nil, calling process is used.
- set class; a priority record can have multiple

classes
- set user defined class

Conclusion
One distinguishing thing about Macintosh program-

mers has usually been a willingness (whether out of
genuine concern or necessity) to work harder so the
user doesn’t have to. What I am proposing will
require more work on the part of developers in the
design and construction of software.
When you start making it easier for the user to have

their computer performing additional and/or antici-
patory tasks without noticeably interfering with the
user’s active tasks, they will start using those facili-
ties. It’s like putting more ram or storage into a sys-
tem — it will be used. This is about increasing the
amount of work that can be got out of a system; even
‘slow’ processors have the potential to perform much
more work. If a user doesn’t have more work for their
system to perform, the spare processing can be allo-
cated for distributed processing by other systems.
I see two major additions/changes needed in the

Macintosh OS. The first is the complete multi-thread-
ing of OS-components, as well as prioritization of sys-
tem tasks. The second the introduction of a system
wide manager for process priority control.
This paper has also covered many areas of task

design and creation, as well as prioritization, which
should be considered and hopefully implemented by
software designers.
The less the user has to interact with the computer,

the less user input required for work to be done, the
better. This will allow greater productivity with less
effort by end users.

Bibliography and Related Readings
I refer you to the following readings for more specif-

Macintosh Task and Process Priority Management page 6 1

ic discussion of process design and applications, espe-
cially agent technologies. More comprehensive list-
ings of additional readings may be found within these
readings.

[1] Communications of the ACM. Volume 37,
Number 7. July 1994.

[2] Haupt, Christopher. “The Construction of a
TCP/IP to Apple Event Gateway for use in
Distributed Computing Experimentation”,
MacHack Proceedings 1992.

[3] Horwat, Waldemar. “Communication
Abstractions in Concurrent Processing”
MacHack Proceedings 1993.

[4] Looker, Shane D. “Parallel Processing on a
Macintosh Network”, MacHack Proceedings
1993.

[5] McConnell, Steve. Code Complete: A Practical
Handbook of Software Construction. Microsoft
Press. Washington, U.S. 1993.

[6] Robinson, Patrick G. and James D. Arthur.
“Distributed Process Creation Within a Shared
Data Space Framework” in Software—Practice
And Experience. Pp. 175-191. Volume 25,
Number 2. February 1995.

[7] Sisak, Steve. “Adding Threads to Sprocket” in
MacTech Magazine. Pp. 41-52. December 1994.

[8] Tannenbaum, Andrew S. Modern Operating
Systems. Prentice-Hall, Inc. Englewood Cliffs,
New Jersy. 1992.

[9] Tannenbaum, Andrew S. Structured Computer
Organization, Third Edition. Prentice-Hall, Inc.
Englewood Cliffs, New Jersy. 1990.

[10] Thelen, Randy. “Threading Your Apps” in
MacTech Magazine. Pp. 48-55. November 1994.

[11] Howard, Stephen. “Copland revealed at
WWDC” in MacWeek. Volume 9, Number 20.
May 15, 1995.
<URL:http://www.ziff.com:8006/~macweek/mw_
051595/news1.html>

[12] Dreyfus, Paul. “Copland: Technology for
Customers’ Sakes” in Apple Directions. June
1995.
<URL:http://www.info.apple.com/dev/appledirec-
tions/jun95/newsstratmos.html>

Contacting the Author
g n e u f e l d @ c c s . c a r l e t o n . c a
a a 9 1 7 @ f r e e n e t . c a r l e t o n . c a
g r a n t @ i d c . c o m
h t t p : / / a r p p 1 . c a r l e t o n . c a / g r a n t /
h t t p : / / w w w . c a r l e t o n . c a / ~ g n e u f e l d /

page 6 2 MacHack ‘95 Program Book & P a p e r s

History of TV
The origins of television come from a paper entitled

“The Iconoscope–A Modern Version of the Electric
Eye” 1934, V. K. Zworkin (RCA Victor). This was a
description of the first practical TV image pickup
tube. In conjunction with an earlier paper discussing
raster scanning on cathode ray tubes, television
became practical. Then came World War II.
Television took off after the war. NTSC video (and

RS-170) started out in the 1940’s as a standard for
transmitting and drawing black and white images on
a cathode ray tube (CRT). This was accomplished by
scanning an electron beam that would strike a phos-
phor coating on the inside of a vacuum tube both
horizontally and vertically at pre-set rates and modu-
lating the intensity of the beam, in addition to syn-
chronization pulses.

Figure 1 - Cathode Ray Tube (CRT)

There were three major problems to be solved:
1) There was a limited broadcast bandwidth.
2) A phosphor was needed that would stay on from

one scan of the beam to the next.
3) The scan rate had to be high enough to redraw

the screen in a reasonable period of time.
Add to that the fact the humans start to notice flick-

er when the frame rate gets below 24 frames per sec-

ond (and some have seizures at 16 per second). The
standard later evolved to support color, requiring
even more data in the signal.
The current standard draws 525 lines on a CRT

every 1/30 of a second. Each one of these lines is
horizontal and goes left to right on the tube. This
leaves 52µs (of the 64µs per line) to draw a horizon-
tal line. Of the 525 lines, only 480 are defined within
the viewing area, and most television sets are lucky to
get 350 lines. With 480 lines visible and a standard
4:3 aspect ratio, there are 680 points horizontally.
This requires at least a 6.1 MHz signal for black-and-
white, and that simply isn’t available for broadcast.
In reality, the horizontal resolution is much less than
that (3.3 MHz) which gives 340 real points on a line.
The resolution isn’t the same horizontally as it is ver-
tically.

Interlace
There is a problem with drawing 400+ lines from the

top of the screen to the bottom of the screen, espe-
cially with 1940’s technology. The top lines have
faded by the time the bottom ones are drawn. The
solution was interlace.
Imagine that the scan rate is not one frame per 1/30

of a second, but rather two frames per 1/30 of a sec-
ond (or one frame per 1/60 of a second). The first of
these frames draws the odd numbered lines (1, 3, 5,
…) and the second draws the even numbered lines
(2, 4, 6, …). The lines from the even frame are
drawn between the ones on the odd frame. This is
called 2:1 interlace.

Video: Implications of a 60 year old technology;
How to deal with its idiosyncrasies

J. Christian Russ, Reindeer Games, Inc.

NTSC video is the mainstay of American entertainment, Television, Videodisk, Videotape, and now Quicktime. But
when performing video effects in Quicktime, there are some things to be aware of. A lot of compromises were made in
video to make it look as good as it does. It depends upon many properties of the human visual system. This paper dis-
cusses some ways of improving video, helping WYSIWYG, and making compression better than thought possible.

Idiosyncrasies of Vi d e o page 6 3

Figure 2 - Interlace Fields: Odd & Even

In this way, the amount of time from the top to the
bottom of the screen is only 1/60 of a second for
262.5 lines, and cheaper phosphors can be used.
[This can best be described as a video hack.] At
50Hz in Europe, the frames are 625 lines and thus
30% larger. Typically PAL is digitized at 768x512 with
the same 4:3 standard aspect ratio as NTSC. PAL and
SECAM use different color encoding schemes.
This interlace has some rather disturbing implica-

tions on image digitization if anything is moving in
the field of view. More on this later.

Noise & Electrical Appliances
There are two kinds of noise: random noise and pat-

tern noise. Random noise causes speckle throughout
the picture, but pattern noise causes repeating pat-
terns, and can often be removed with better cables,
shielding, and grounding. Certain kinds of image
processing can remove pattern noise, too.
Appliances with fans, compressors, microwave emit-

ters, electron guns (TV’s), RF crystals (computers,
radios) can cause pattern noise.
Everything in a house (that has electricity) that can

conduct a current is oscillating at 60Hz. including
skin, pets, metal, containers of soda, etc. The wire
that connects the camera to the computer acts as an
antenna and also gets a 60Hz signal imposed on it
that may or may not be in phase with the video sig-
nal. This can show up as interference patterns in the
picture. This wire also picks up the pattern noise
from household appliances.

Color
By the 1960’s color television was on the consumer

horizon, and there was a big problem; how to still
allow the existing black-and-white television sets to
work, and yet provide color for the color sets? The
solution is another video hack, and explains why
there is a strange transform to convert a color picture
to gray scale. The NTSC solution was to separate
RGB color into YIQ space.

Basically the idea was to compress the signal espe-
cially where people can’t see the differences as easily.
Its okay if the color is slightly wrong as long as the
edge is in the right place. YIQ breaks the RGB image
into three parts: Y (also called luminance) which is
still treated as the B/W intensity image, I (standing
for in-phase) is an orange-cyan axis, and Q (standing
for quadrature) is a magenta-green axis. I and Q
(combined signal called chrominance) are modulated
at 3.58 MHz (interesting how this is the video clock-
rate of an Apple II) on top of the Y signal. On a
black-and-white set, all you see is the Y signal,
because the higher frequencies (containing the color
information) aren’t shown.
Because the low-frequencies contains the intensity of

the image, if there is noise, or some of the signal is
lost, it is more likely that the color should be messed
up, not the position of the edges. (NTSC stands for
the National Television System Committee, but often
referred by engineers and technicians as “Never The
Same Color”.) For compression purposes this noise
is a big deal, especially since most of QuickTime
compression techniques use RGB color.
Film is completely different. With motion pictures

the entire frame is projected 48 times per second
(each frame twice). No portion was drawn first or
last, and everything fades away at the same rate while
the next frame gets ready to be projected.

page 6 4 MacHack ‘95 Program Book & P a p e r s

Digitizing Images from NTSC
A computer uses a frame grabber board to capture a

video signal synchronized to the top of the frame and
will digitize the signal into memory, either on the
card itself, or over the bus. A lot depends upon how
good the A/D (analog to digital converter) is because
a poor one will produce a lousy image.
There is a bigger problem than the quality of the

A/D, however. It is interlace. While it is true that the
image is 640x480, there is the problem that the even
lines (2, 4, 6, …) were digitized 1/60 of a second later
than the odd lines (1, 3, 5, …). If there is a moving
object this causes some nasty effects.

Figure 3 - Edge Tearing

The most common solution is to ignore the even
lines and only keep the odd ones through a technique
called “line-doubling”. Unfortunately when people
use this technique, they still assume that the frame
rate is only 30 frames per second, where there are
now really 60 frames. [I have never seen a VCR that
allows still frames and uses line doubling that will
show the even lines as well as the odd ones.]
The Video-Spigot™ and Apple’s AV board (including

the 840AV and 660AV) are in the same category.
These boards perform line-doubling to solve the
interlace problem, and go on to provide several sam-
ple down sizes for the video frame: 1/2, 3/8, 1/4.

Note: the 3/8 size doesn’t look as good when the
video hardware samples down. It is generally
better to grab the 1/2 size and sample down in
ConvertToMovie™.

There is another problem caused by interlace.
Aliasing is caused when a line is near horizontal and
we use line doubling, or the method of just keeping
one of the two frames.

Figure 4(a)(b) - Horizontal Aliasing

If the object that has these aliasing effects is moving
across the screen, sometimes falling across a odd line
and being visible and sometimes falling across an
even line and being dropped, moving Møire patterns
result.
Digitizing BOTH the odd and even lines and averag-

ing down to the desired size is vastly preferable to the
line-doubling process for still scenes. For moving
scenes, where there are no narrow near-horizontal
lines, line-doubling is acceptable.

Dealing with Noise
Noise can come from a number of sources, but the

primary source is the A/D. Here is where the quality
of the A/D and the conversion circuitry that converts
YIQ back into RGB comes into play. In order to sim-
plify this problem let’s assume that we have just a
black-and-white signal. If the A/D has 6 bits then the
video signal can be turned into 64 discrete values,

Idiosyncrasies of Vi d e o page 6 5

giving a signal-to-noise ratio of 64:1 or 36dB (deci-
bels). Furthermore, the IEEE has only defined 140
levels in the video intensity, so there are slightly more
then 7 real bits in the intensity contained within the
video signal.

Signal-to-Noise (S/N) Ratio:

(dB) = 20 * LOG10(biggest - smallest)

Bits Dynamic Range S/N ratio (dB)
4 15 24dB
5 31 30dB
6 63 36dB
7 127 42dB
8 255 48dB
12 4,095 72dB
16 65,535 96dB CD-Audio
18 262,143 108dB

Now consider 15-bit color. Treat this as three 5-bit
A/Ds, one each for Red, Green, and Blue. The bottom
bit is correct somewhat more than half of the time,
plus the original source was NTSC, so there is a sig-
nificant impact on compression, especially when
nothing is changing in certain areas of the image.
The obvious solutions are to:

1) Adopt a digital video standard so that the digiti-
zation is done when the picture is captured, and
everything stays digital after that,

2) Try to take the picture directly from a camera or
video disk instead of video tape,

3) Get a better A/D chip, although NTSC video will
still be a problem, or

4) Use frame averaging.

Frame Averaging
Frame averaging is the digital equivalent of a longer

exposure time with slower film. The grain size is
smaller and the amount of visible noise is less. The
actual exposure time can’t be lengthened with a video
camera easily, but digital frame averaging does the
same thing.
This method adds together a series of frames and

keeps only the average of the pixels at each x, y point.
If the scene is not changing, an A/D that was 5 bits
(30dB) can be improved to 8 bits (48dB) by simply
adding eight frames together. By adding 128 frames
the quality can be improved to 12 bits (72dB), but
since TIFF and PICT only store 8 bits per color chan-
nel, the extra averaging is usually wasted. (It also
takes a lot longer.)
Simple averaging isn’t terribly useful when some-

thing is moving in the scene. Obviously any areas
within the video clip that are static should be

replaced with their averages using statistics to get a
better signal-to-noise ratio. But, what is a static area
and what isn’t?
Just as it is possible to compute a pixel’s average

over a series of frames, it is possible to compute its
variance.

Wherever the variance is low, the image is not
changing much, so if we provide a threshold, or a
maximum limit that the variance can be, the pixels
can be selectively replaced for every frame in a video
clip. This generally only works if the camera stays in
a fixed position, but this is already a major improve-
ment in image quality.
If the compressor uses frame differencing, then these

static areas within the image require no storage
beyond the key frame. The means that compressed
file size goes down, playback speed goes up, and
image quality improves.
It should also be possible to make an picture from

the variances. It could be black-and-white or color,
depending upon how the separate color channels are
treated, but it could be used to segment the original
for smart sweeps, dissolves, blue-screening, or other
digital effects.

Conclusion
Video is not simple to digitize. The same trick that

makes possible broadcasting a passable picture that
degrades well, makes getting a really good picture dif-
ficult. Methods that reduce noise and improve color
quality are well worth the trouble since they also
improve compression and playback speed.

References
Huntsberger, David V. and Billingsley, Patrick

(1981) Elements of Statistical Inference, Fifth
Edition Allyn and Bacon, Boston, Mass.

Inoué, Shinya (1986) Video Microscopy, Plenum
Press, New York, New York.

Russ, J. C. (1990) Computer Assisted Microscopy,
Plenum Press, New York, New York.

page 6 6 MacHack ‘95 Program Book & P a p e r s

Appendix: Gamma - Linear vs. Log
When watching television it is pretty easy to tell

what was filmed with a studio camera from what was
filmed with a hand-held video tape recorder. There
are several indicators of this:

1. There is quick or shaky movement (home
video).

2. The image is grainy.
3. The lighting looks “different.”

In a lot of the action TV series the directors try to get
a lot of interesting shots during the stunts.
Unfortunately the cameras can be expensive, so they
place the studio cameras in safe places and occasion-
ally put disposable High-8 Camcorders on tripods in
creative locations to see what they might get. These
little clips get spliced in and are only on the TV
screen for a few seconds at a time, and yet the viewer
can tell right away what happened.
There are several reasons for this, as mentioned

above, but the best reason is the third: the lighting
looks different. This is because of a side effect of the
types of cameras and how they respond to light. In
the desktop publishing community this is called
gamma.
In order to understand the gamma curves and when

they are appropriate, it is necessary to look at the
human visual system and film.
The human eye has about 5 bits of resolution

(humans can see about 30 grey levels at a time), and
that is distributed over the the intensities that it
receives logarithmically. This provides excellent
response in high and low light conditions even before
the pupils react and the eyes adjust.
Photographic materials, film emulsions, paper, etc,

all respond logarithmically as well, and typically film
is vastly better than the human eye in what it can see
all at once.

Figure A. Film has a logarithmic response to light for
over a large portion of its response curve. Most photog-

raphers use this Optimal Response range.

A vidicon camera (or a tube camera) outputs voltage
that is proportional to the log of the brightness that it
sees. This voltage is transmitted to a television which

has the same properties – the display shows the expo-
nential of the voltage in the video signal. Therefore
no correction was needed.

Figure B. The intensities are broken up into logarithmic
steps. Since the histogram is also logarithmic, the

intensities seem to have equal steps.

CCD cameras are a result of the VLSI revolution.
The elements in the CCD camera build up voltage
directly from the light that strikes each element.
Internally, the voltage is linearly related to the
amount of light that struck it. (This is excellent for
low-light conditions.)
Cheap video cameras then turn this accumulated

voltage into a video signal, but the lighting in the
resulting image looks different on any display device
that worked well with old video.

Figure C. The intensities are broken up into linear
steps. Since the histogram is also logarithmic, the

intensities seem to have un-equal steps.

The gamma curve is a mapping function that com-
putes how a linear voltage should appear on a log
device like a TV or Film Recorder. This gamma cor-
rection takes place inside of studio cameras so they
behave in the same manner as film or old-style vidi-
cons.

Idiosyncrasies of Vi d e o page 6 7

Figure D A gamma mapping function that takes a lin-
ear intensity and changes it so it appears correct on a

logarithmic display device.

Unfortunately if there are only 8 bits in the signal,
the darker portions of the images seem very choppy -
the differences between low light levels seem very
exaggerated and the image does not look good.
This problem is abated with linear output devices. If

an image from a CCD camera or scanner is printed on
a Laser Printer or with offset printing then everything
is fine and no gamma correction is necessary. The
gamma is needed to look at the image on the screen,
but NOT on the printed page.
Conversely, if the image came from a log device and

is displayed on a linear device (such as a printer), the
curve needs to go the other way.

Device Linear/Log approx # bits
Input Devices:

Human Eye Log 5
Film Log 18
Slides Log 10
Scanners Linear 8†
Vidicon Log 7
CCD Camera Linear 7
Studio Camera Linear -> Log 12*, 7

Output Devices:
TV Set Log 7
LCD Panel Linear 4–5
Prints Log 15+
Slide Projector Log 10
Laser Printer Linear 6
Offset Printer Linear 8

† Some scanners digitize 10 or even 12 bits, but gener-
ally are all linear response.
* Studio cameras use 3 chips, one for each Red, Green,
and Blue light. The chips map their voltages into a log-
arithmic response within the camera and then it is send
out as an RGB video signal. Once it becomes a video
signal there are only ~7 bits left.

page 6 8 MacHack ‘95 Program Book & P a p e r s

Listed below is a commented list of common
snags one runs into when implementing a GUI
system in C++, especially a general purpose one. I
hit mine while wrapping XVT’s platform-indepen-
dent GUI engine (still smacking of Windows) in a
C++ class library. It appears that the pitfalls and
workarounds (kludges) are fairly common.

1. Don’t CREATE constructing (or at
least, don’t show it)
That is, constructors of Window, Dialog, etc. classes

(and their descendants) are better not to open a win-
dow on the screen: they should leave the creation of a
GUI object for a later time. Otherwise they deny any
derived class an opportunity to modify appearance of
the window or to do some initialization at the CRE-
ATE event. For example, suppose Basic_Window
handles a plain regular black-on-white window:

class Basic_Window {
public:

Basic_Window(Rect rect) { GUI_create_win-
dow(rect,visible,this); }
virtual void handle_create_event() { set_back-
ground(BLACK); }

};
If I want merely to change the background, I’ll derive
class MyWindow : public Basic_Window {

virtual void handle_create_event() {
set_background(RED); }
p u b l i c :

MyWindow(Rect rect) :
Basic_Window(Rect rect) { }

. . .
} ;

MyWindow my_window(default_rect);
Unfortunately, my_window would show up black,

not red! When the Basic_Window “portion” of

MyWindow is being constructed, the
Basic_Window() constructor runs within the
environment of the Basic_Window class.
Therefore, until Basic_Window() finishes, it is
B a s i c _ W i n d o w : : h a n d l e _ c r e a t e _ e v e n t ()
that will be handling the CREATE event generated by
G U I _ c r e a t e _ w i n d o w () .Virtual tables of
M y W i n d o wclass kick in only when the base class is
completely constructed, that is, when the window is
already on the screen and it is too late to change its
background color without flashes.
The easy work-around is to require every construc-

tor either not to create a Window Manager object
(and thus hold off the event processing until derived
classes finish constructing), or, at the very least, keep
the window hidden/disabled until further notice. It
works, but it isn’t very cool: for one thing, one always
needs to remember to call a special function to show
a window to the user. For another (and more impor-
tant) thing, if somebody gave you some Window class
and this class’ constructor does go ahead and present
a window, this Window class is “underivable”: you
can’t make a derivative class that slightly and nicely
modifies the appearance of a window the original
class creates.
This example alone breaks a nice metaphor “window

on the screen <-> window class object in memory”.
They are different beasts indeed: and it’s possible to
have a window class object without the correspond-
ing screen window (and sometimes, the vice versa,
see below).

2. Don’t rely on virtual functions for
relaying events
Suppose we have a Basic_Window class that

shows some fancy picture in a window:
class Basic_Window {

Why C++ isn’t very fit for GUI programming
Oleg Kiselyov

CIS, Inc & University of North Texas
303, N.Carroll, Suite 108 Denton TX 76201

oleg@ponder.csci.unt.edu, oleg@unt.edu, http://replicant.csci.unt.edu/~oleg/ftp/

With no intent of starting a holy war, this paper simply lists a few annoying C++ birthmarks that the author has come
across developing GUI class libraries. The main snag appears to be that C++’s idea of objects, classes and the hierar-
chy of classes looks tantalizingly close to GUI’s concepts of gadgets, widgets, window classes and subwindows.
However, they are not quite similar: C++ was designed to be a “static” language with a lexical name scoping, static
type checking and compile-time type construction/hierarchy. GUI objects, on the other hand, are inherently dynamic;
they usually live well beyond the procedure/block which has created them; their hierarchy is defined to a large extent
by event flow/capture and geometry/layout. Many GUI fundamentals such as parent-window-child subwindow hierar-
chy and event relaying (let alone memory allocation issues) are not supported in the C++ “core” (or supported as
“exceptions” - pun intended). All in all, this leads to unnecessary bloating of the code, duplication of the window man-
ager functionality, engaging in unsafe practices and foregoing of many strong C++ features (like scoping rules and
compile-time type/method verifications). The paper lists a few major C++/GUI sores and illustrates them on simple
examples.

Why C++ i s n ’t very fit for GUI p ro g r a m m i n g page 6 9

p u b l i c :
virtual void repaint() {

draw_fancy_picture(); }
. . .

} ;

We derive MyWindow class to modify the basic
functionality a little: draw some rubber-box-type rec-
tangle over the picture (say, to emphasize some area
of it):
class MyWindow : public Basic_Window {

Rect rect;
virtual void repaint() { draw(rect);

}
} ;

Unfortunately, the window associated with
M y W i n d o wobject would show no fancy picture, only
a rectangle in an empty window. Indeed, since
MyWindow::repaint() overrides
Basic_Window::repaint(), the latter func-
tion would never be called should the window need
repainting. Note the fancy picture itself is a private
property of the B a s i c _ W i n d o w, something that
M y W i n d o w : : r e p a i n t ()can’t get hold of. So, one
always has to keep in mind to write r e p a i n t ()like
that:
class MyWindow : public Basic_Window {

MyWindow(void) : Basic_Window() {}
virtual void repaint() {

Basic_Window::repaint(); draw(rect); }
} ;

The constructor of M y W i n d o wis spelled out here to
emphasize that r e p a i n t ()in a sense should work
like a constructor: the first thing, it has to call its
uncle, and then go on tinkering with its inheritance.
This trick, call the uncle first, has to be done in every
virtual function that has something to do with events,
like h a n d l e _ r e s i z e (),
h a n d l e _ c o l o r _ e v e n t (), etc. Doesn’t it look like
the standard “virtual” functionality being slightly
inadequate?
Note, that during the construction of a derived

object, the compiler implicitly and tacitly creates the
underlying base object first (and saves us the hassle
of doing it explicitly). In a sense, the compiler
“relays” the object construction “event” down the
hierarchy. Most of other events (expose, resize, etc.)
have to be relayed in the similar way, too: alas, the
compiler is of no help here, and we have to do relay
all by ourselves.

3. Clashes of hierarchies
Besides a hierarchy “generic tool -> specialized

instance” which C++ is based upon, GUI environ-
ments have another hierarchy of windows/subwin-
dows (or dialogs/controls). The latter has little to do
with specializing, and a lot to do with layout.
Sometimes the hierarchies clash. Let’s consider again
the example of a picture shown in a window, and a

small rectangle dragged around over the picture. One
can implement this using two separate windows: pic-
ture and a rectangle. One of them has to be a parent
of the other, that is, when the picture window gets
hidden/closed, the rectangle has to drop out of sight
too. This solution taps the smarts of the GUI window
manager to figure out which window should get a
repaint event. For example, if some part of the rectan-
gle area becomes obscured and later exposed, only
the rectangle window receives the repaint event. If
the entire picture emerges from obscurity, both the
picture window and the rectangle have to be redrawn
(but the picture first).
On the other hand, one can think of a picture win-

dow with a drawn rectangle as a particular instance of
just a picture window. So, we come the MyWindow :
B a s i c _ W i n d o whierarchy of the previous section.
Now, both the picture and the rectangle in it are rep-
resented by a single object of class M y W i n d o w.
M y W i n d o w : : r e p a i n t ()receives all repaint events
(method overriding works like the “exclusive or”). If
M y W i n d o wwants to be smart and avoid redrawing
the picture when it’s not necessary, it has to look into
which area needs repainting, and call
B a s i c _ W i n d o w : : r e p a i n t ()only when it is
absolutely needed. In short,
M y W i n d o w : : r e p a i n t ()should (re)implement
what is already built into the Window Manager.

4. Destruction is tough, too
This is the famous problem of what should be

destroyed first, a chicken or an egg: should a CLOSE
event handler do delete *this;? Should the
destructor call c l o s e _ w i n d o w () ;? Probably one
needs both:
class SimpleWindow {
p u b l i c :

void handle_close_event(void) {
delete *this; }

~SimpleWindow(void) {
GUI_close_window(); }
} ;
SimpleWindow * a_window_ptr = new
S i m p l e W i n d o w (. . .) ;

Suppose the user has clicked “OK” or “Dismiss” but-
ton, and the window is to be closed. The GUI server
during the clean-up notifies the * a _ w i n d o w _ p t r
object that it’s going to be destroyed: the server sends
the object a CLOSE or TERMINATE event. This is
going to be the last event sent to and handled by the
object. Since the screen window is being wiped out,
so should be the object: it has to delete itself.
Now let’s suppose that the program decided to get

rid of the object before that by doing
delete a_window_ptr;

somewhere in the code. The corresponding window
on the screen should be closed, too (otherwise there
would be something on the screen with all its data

page 7 0 MacHack ‘95 Program Book & P a p e r s

and the event handler already disposed of). So one
has to call the window manager and tell it about this.
But this would result in a CLOSE event being sent to
the object, which would delete itself one more time.
Does it smell of danger here? Thus, one has to be
very careful when disposing of window objects, and
keep a special flag to tell if a screen window has been
already closed. Again, the metaphor “a window object
in memory <-> a window on the screen” is slain once
again.

5. Out of scope
Static name scoping of C++ isn’t very compatible

with the dynamic nature of GUI objects. Creation and
destruction of names (and on-stack objects) follow
static lexical rules in C++. However, when the name
of a window object goes out of scope, it more often
than not means that the window itself should remain
on the screen. Indeed, in the context
void on_show_button_hit(void)
{

Picture picture(“file.pic”);
PictureWindow window(picture);

}

one usually wants for picture to remain on the
screen after the function finishes. So, one has to write
void on_show_button_hit(void)
{

Picture * picture =
P i c t u r e (“ f i l e . p i c ”) ;

PictureWindow * window =
P i c t u r e W i n d o w (p i c t u r e) ;
}

After the function finishes, the objects, P i c t u r e
and P i c t u r e W i n d o w, would be still alive; however,
the pointers to them (their names) would be already
disposed of. Once the object reference disappears, it’s
rather difficult to dispose of the object when it’s no
longer needed. Thus heap objects without names
(and/or references) proliferate. The only clean way of
handling this situation is making basic window class-
es self-threading etc., which in a sense, is a duplica-
tion of the functionality already built into the win-
dow manager (GUI server).
Of course all these snags aren’t fatal. C++ is a univer-

sal and powerful language, capable of expressing
every possible computational algorithm (because one
can “build” a Turing machine in C++). Therefore, if
an application demands dynamic features, like the
ones built into Tcl/Tk, Scheme/Tk, PostScript, etc.,
one can always emulate/implement them in C++. But
why not to use a well-designed “dynamic” language
in the first place?

